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Abstract—Machine learning (ML) has become a pervasive tool
across computing systems. An emerging application that stress-
tests the challenges of ML system design is tiny robot learning, the
deployment of ML on resource-constrained low-cost autonomous
robots. Tiny robot learning lies at the intersection of embedded
systems, robotics, and ML, compounding the challenges of these
domains. Tiny robot learning is subject to challenges from size,
weight, area, and power (SWAP) constraints; sensor, actuator,
and compute hardware limitations; end-to-end system tradeoffs;
and a large diversity of possible deployment scenarios. Tiny robot
learning requires ML models to be designed with these challenges
in mind, providing a crucible that reveals the necessity of holistic
ML system design and automated end-to-end design tools for
agile development. This paper gives a brief survey of the tiny
robot learning space, elaborates on key challenges, and proposes
promising opportunities for future work in ML system design.

I. INTRODUCTION

Machine learning (ML) has become a pervasive technology,
and as it spreads beyond traditional computing platforms
(e.g., servers and desktops) towards devices on the edge (e.g.,
mobile, embedded, IoT, AR/VR, robotics, and other cyber-
physical systems), new design pressures and constraints arise
that fundamentally impact the ML system design process.

An emerging application that stress-tests the challenges of
designing ML for edge devices is tiny robot learning, the de-
ployment of ML on resource-constrained low-cost autonomous
robots. These robots are lightweight (e.g., less than a pound, or
under ∼ 500g) and can operate in small spaces, making them
a promising solution for applications ranging from emergency
search and rescue [14], [15], [35], to routine monitoring and
maintenance of infrastructure and equipment [12].

Tiny robot learning dials up the challenges of edge device
ML, maximizing opportunities to refine edge ML system
design by putting it through the crucible of the combined
challenges of tiny (i.e., embedded) systems, robotics, and
machine learning, all in one system deployment (Fig. 1).
Tiny robot learning is subject to challenges from size, weight,
area, power (SWAP) and cost constraints; sensor, actuator, and
compute hardware limitations; end-to-end system tradeoffs;
and a large diversity of possible deployment scenarios.

This material is based upon work supported by the National Science
Foundation under Grant 2030859. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the funding organization.

Fig. 1. Tiny robot learning combines tiny (i.e., embedded) systems, robotics,
and machine learning, revealing challenges and opportunities for ML research.

Embedded tiny systems have severe SWAP constraints.
For machine learning, this means that large, computationally-
intensive models must be made to run on computing substrates,
such as microcontrollers, with limited memory resources, and
limited or no operating system support. Outside of robotics,
SWAP constraints appear in many emerging edge device
applications, and are being addressed with novel “TinyML”
techniques such as model compression and distillation [5].

This challenge is compounded when tiny systems and ma-
chine learning intersect with robotics applications, and small-
scale low-cost tiny robots impose additional constraints on
both the ML model design as well as the end-to-end system
surrounding the ML core. These robots have limited sensors,
actuators, and compute resources, which complicate the de-
velopment and implementation of TinyML models. Robotics
is also a computationally-demanding application space, where
ML models must learn complex and robust robot behaviors.

Adding to this difficulty, ML in untethered autonomous
robots is fundamentally embodied, that is, the entire end-to-
end robot system impacts the choices made in ML system
deployment. In a tiny robot especially, critical tradeoffs must
be made between the power and weight resources allocated to
ML versus other parts of the system, e.g., sensor processing.

Finally, tiny robot deployments vary across robot models,
system components, tasks, and environments, so it is essential
to develop automatable flows to keep the design process agile.

The challenges of tiny robot learning are a call to action for
the ML circuits, architecture, and systems design community.
There are exciting opportunities for ML revealed by these

ar
X

iv
:2

20
5.

05
74

8v
1 

 [
cs

.L
G

] 
 1

1 
M

ay
 2

02
2



Fig. 2. Tiny robots are resource-constrained low-cost autonomous robots.
Pictured are full-size [3], [7], [18], [23], [46] and tiny [6], [13], [40] robots.

challenges, including applying embedded TinyML techniques
to computationally burdensome problems in robotics; using
ML to compensate for the limitations of low-cost sensors and
actuators; performing end-to-end co-design of ML with the
surrounding cyber-physical system; and creating generalizable
and automatable design flows for both software and hardware.

To explore the implications of tiny robot learning, in this
work we give a brief survey of the tiny robots space, elaborate
on the challenges imposed by tiny robot learning as an
application for ML system design, and propose opportunities
revealed by these challenges to improve ML system design.

II. TINY ROBOTS

We define tiny robots as resource-constrained, low-cost,
low-weight autonomous robots. An example is the Petoi Bittle
quadruped [40], which weighs 0.64 lbs (290 g) and costs
under 300 USD (Fig. 2). By contrast, the Boston Dynamics
Spot quadruped [7] weighs 69.9 lbs (31.7 kg) and costs
74, 500 USD, making it 100× heavier and more expensive
than Bittle. To fit within small weight and cost constraints,
tiny robots are often limited in the availability and quality
of onboard sensors, actuators, and compute resources, e.g.,
microcontrollers versus desktop-grade CPUs and GPUs.

While the same general challenges arise from ML design for
a variety of different types of robots (e.g., quadrotor drones,
satellites, quadrupeds, cars, submersibles), some design con-
siderations differ between these platforms. For example, when
comparing quadrotors to quadrupeds, weight is a more extreme
constraint for quadrotors, while quadrupeds require more com-
putationally expensive motion planning and control algorithms
due to their increased degrees of freedom.

Tiny robots are useful in a diverse range of applications.
Table I shows a brief (and incomplete) overview of emerging
applications of tiny robots ranging from search and rescue, to
inspection, entertainment, and STEM education. Because of
their small size and ability to escape detection, we note that
it is essential to exercise ethical consideration in the design
and deployment of tiny robot systems [1], [32]. Concerns
such as safety, privacy, and security must be factored into the
engineering process as first-class constraints.

TABLE I
EMERGING TINY ROBOT APPLICATIONS

Task Robot Weight [g] Citation

Search & Rescue Bitcraze CrazyFlie Quadcopter 33 [14], [15], [35]

Inspection HAMR-E 1.4 [12]

Medical Robotics Wireless Capsule Endoscope 7 [48]

Space Robotics KickSat 5 [34]

Military Reconnaissance Black Hornet 33 [8]

Entertainment DelFly Nimble 28 [22], [38]

STEM Education Mona 290 [2]

Pollination RoboBee 0.08 [49]

The tiny robot examples surveyed in Table I demonstrate
the effectiveness of co-design between sensors, compute and
algorithms. These robots use sensors beyond traditional cam-
eras: tiny lasers, optic flow sensors, light sensors, gas sensors,
pressure sensors, and custom-made tiny cameras. The algo-
rithms they use were intentionally designed with the compute
constraints in mind, allowing them to run on low-power and
low-cost microcontrollers. We expect novel sensors such as
event cameras and optic flow sensors, as well as novel compute
platforms like the Intel Lohi neuromorphic chip [11], to greatly
improve the performance and capabilities of future tiny robots.

III. CHALLENGES AND OPPORTUNITIES

Tiny robot learning lies at the intersection of three chal-
lenging domains (Fig. 1), making it a proving-ground for ML
systems. In this section, we examine four themes arising from
the challenges of tiny robot learning, and propose opportunities
that they reveal for improving ML system design (Fig. 3).

Starting from the ML computation at the core of the system
and moving outward, we focus on: (III-A) the onboard com-
pute; (III-B) the sensors and actuation that represent the inputs
and outputs of the robotics computation pipeline; (III-C) the
entire end-to-end system including the physical robot platform;
and finally, (III-D) the design tools used to re-design the tiny
robot learning system for different deployment scenarios.

A. SWAP-Constrained ML Compute for Robotics Applications

In untethered robot systems, a subset of core computations
must always be performed using onboard compute resources
(rather than being offloaded to the cloud) due to the strict
latency requirements of running at real-time rates (1kHz or
more), as well as a lack of continuous communication and
connectivity guarantees. Tiny robots have limited compute
resources (e.g., microcontrollers) that are severely size, weight,
area, and power (SWAP) constrained, yet they must handle the
same heavy computational burdens and produce the same com-
plex robust behaviors in the real world as full-size autonomous
robots with access to onboard server-class CPUs and GPUs.

Outside of robotics, SWAP constraints appear in many
emerging edge computing applications (e.g., IoT), and are
being addressed with TinyML techniques such as quantiza-
tion [20], distillation [21], and tiny model design [4].

Opportunity: Tiny robot learning reveals opportunities for
the application of TinyML techniques to difficult problems
in robotics. Prior work has applied ML across the stages of



the robotics computational pipeline (shown in Fig. 3): percep-
tion [33], mapping and localization [30], and motion planning
and control [24], [28]. By mapping these robotics tasks to ML,
one can leverage existing work to compress and accelerate ML
under extreme SWAP constraints, enabling the deployment of
complex tasks on resource-constrained tiny robot platforms.
Learned approaches can also offer computationally cheaper
alternatives to traditional robotics algorithm pipelines through
end-to-end learning-based approaches (Fig. 3) [15], [31].

In addition to inference model implementation, there are
implications for training in robot learning that take on a
new dimension when applied to tiny robots. The mainstream
approach is to learn offboard and deploy the trained solution
on the robot. An obvious limitation of small robots is that
the solution, typically a neural network model, has a lower
complexity (fewer layers, neurons, etc.). Besides a somewhat
lower performance, this also means that it is hard to train
models on a large variety of environments and conditions, as
the network may simply not be expressive enough.

A promising solution to this is to perform online learning,
which would allow the tiny robot to learn about its immediate
environment. Having a small learned model for a lower variety
of environments may be acceptable, given that smaller robots
will typically travel less far [27]. It would be interesting
to investigate the trade-off between model complexity and
practical use for tiny autonomous robots. Like small insects,
tiny robots may be able to exploit less powerful learning
models to function well in a specific environment [16]. Of
course, online learning is already a challenge for robots in
general and becomes even more challenging on tiny robots.
For example, catastrophic forgetting is often solved by means
of maintaining a replay buffer [36], but this will be harder
to execute given very limited memory. In general, machine
learning methods for tiny robots will have to more carefully
assign resources to what is learned and what is forgotten.

B. Sensor and Actuator Limitations in Tiny Robot Platforms

With cost and SWAP constraints, traditional sensors are
often impractical on tiny robot platforms, forcing them to rely
on lower-quality sensors [15]. Tiny robots may also have fewer
and less-precise actuators than full-size robots. For example,
the Spot quadruped [7] has position and force sensors on its
legs and 12 degrees of freedom (DoF), while Bittle [40] has no
position or force sensors and only 8 DoF. ML techniques can
enable complex behaviors on full-sized robots (e.g., quadruped
locomotion on difficult terrain [28]), but with component
limitations, tiny robot platforms face an additional hurdle.

Opportunity: Low cost proximity and light sensors can
replace larger, more costly sensors like cameras or LIDAR
by using additional processing, often ML, to achieve the same
levels of perception as their higher-quality counterparts. For
example, monocular depth estimation [33] can be substituted
for wide-baseline stereo cameras. In some cases, the lower
dimensional input from, e.g., light or proximity sensors, means
that a simple policy can be developed to solve a complex
problem. For example, system-specific sensor and algorithm

Fig. 3. Promising research directions revealed by tiny robot learning include
applying embedded TinyML techniques to traditional robotics applications;
using ML to compensate for sensor and actuator limitations; end-to-end co-
design of ML with physical systems; and developing automatable design flows
for agile re-deployment to new target platforms (e.g., [39], [40], [47]).

selection can yield lighter computation than traditional map-
ping and localization using cameras or LIDAR [15].

ML algorithms can also enable robots to use limited and
degraded sensory input to overcome challenges such as motion
control with imprecise actuators and a lack of direct position
feedback. For example, recent work used a hybrid model-based
and learning-based controller to enable a tiny quadruped to
walk over uneven terrain [43], despite tight SWAP and cost
constraints on sensing and actuation.

C. End-to-End Co-Design of ML with Physical Robot Systems

Given the severe software and hardware constraints faced
by tiny robots (Sections III-A, III-B) there is a need for
holistic end-to-end system co-design to develop optimized and
task-specific tiny robot systems. Designers must account for
physical properties (e.g., battery weight) to understand overall
system metrics like maximum velocity [26] and mission time.

Opportunity: There is an opportunity to improve overall
system performance by building holistic end-to-end bench-
marking frameworks. These frameworks enable exploration of
quantitative tradeoffs between cost, robustness, and efficiency
across the entire cyber-physical stack, and help designers
find efficient operating points, which are especially impor-
tant for resource-constrained platforms. An example is the
Air Learning [25] framework, which evaluates combinations
of learning algorithms, ML models, sensing modalities, and
onboard compute platforms for autonomous drones.

By leveraging end-to-end benchmarks, the physical prop-
erties of robotic systems can be co-designed with the com-
puter hardware, algorithms, and application. Early work has
explored co-design for drones [9], [26] and legged robots [17].

An end-to-end benchmarking framework also exposes de-
sign parameters that can enable the use of machine learning
methods to build machine learning systems. Recent work has
used techniques like Bayesian optimization [44], evolutionary



algorithms [10], and reinforcement learning [19] to efficiently
navigate the design space of neural network model parameters.
These techniques can be extended to co-design ML hardware
accelerators with the physical parameters of the robot platform.

D. Generalizeable and Automatable Design Flows

An extreme challenge for tiny robot learning is navigating
the large diversity of robot deployment scenarios. Deploy-
ments vary across robots, system components, tasks, and
environments, creating an enormous design space to explore.

Opportunity: The diversity of robot learning deployments
reveals the need for generalizeable and automatable design
flows and methodologies for efficiently navigating the large de-
sign space. There is emerging work in designing such tools for
non-learning-based robotics hardware accelerators [29], [37],
[41], [45]. Outside of the robotics domain, there is also early
work on full-stack open-source tools and generalizable design
flows for the rapid deployment of TinyML accelerators [42].

Some combination of the aforementioned works, along with
the holistic benchmarking frameworks from Section III-C,
may be useful in designing tools for tiny robot learning
systems. Automated design flows are especially appealing for
tiny robot learning because they can encode domain-specific
knowledge into the tools and allow for end-to-end system
design without intervention from experts in multiple disparate
domains: embedded systems, robotics, and ML (Fig. 1).

IV. CONCLUSION

In this work, we examined tiny robot learning: the deploy-
ment of ML on resource-constrained low-cost autonomous
robots. Lying at the intersection of embedded systems,
robotics, and ML, tiny robot learning is subject to challenges
from size, weight, area, and power constraints; sensor, ac-
tuator, and compute hardware limitations; end-to-end system
tradeoffs; and a large diversity of possible deployment sce-
narios. As such, it reveals promising opportunities for future
work developing holistic ML system design techniques and
automated end-to-end design tools for agile development.
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