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Abstract— We introduce RobotPerf, a vendor-agnostic bench-
marking suite designed to evaluate robotics computing per-
formance across a diverse range of hardware platforms using
ROS 2 as its common baseline. The suite encompasses ROS 2
packages covering the full robotics pipeline and integrates two
distinct benchmarking approaches: black-box testing, which
measures performance by eliminating upper layers and re-
placing them with a test application, and grey-box testing,
an application-specific measure that observes internal system
states with minimal interference. Our benchmarking frame-
work provides ready-to-use tools and is easily adaptable for the
assessment of custom ROS 2 computational graphs. Drawing
from the knowledge of leading robot architects and system
architecture experts, RobotPerf establishes a standardized ap-
proach to robotics benchmarking. As an open-source initiative,
RobotPerf remains committed to evolving with community
input to advance the future of hardware-accelerated robotics.

I. INTRODUCTION

In order for robotic systems to operate safely and effec-
tive in dynamic real-world environments, their computations
must run at real-time rates while meeting power constraints.
Towards this end, accelerating robotic kernels on heteroge-
neous hardware, such as GPUs and FPGAs, is emerging as
a crucial tool for enabling such performance [1], [2], [3],
[4], [5], [6], [7]. This is particularly important given the
impending end of Moore’s Law and the end of Dennard
Scaling, which limits single CPU performance [8], [9].

While hardware-accelerated kernels offer immense poten-
tial, they necessitate a reliable and standardized infrastructure
to be effectively integrated into robotic systems. As the
industry leans more into adopting such standard software
infrastructure, the Robot Operating System (ROS) [10] has
emerged as a favored choice. Serving as an industry-grade
middleware, it aids in building robust computational robotics
graphs, reinforcing the idea that robotics is more than just in-
dividual algorithms. The growing dependency on ROS 2 [11],
combined with the computational improvements offered by
hardware acceleration, accentuates the community’s demand
for a standardized, industry-grade benchmark to evaluate var-
ied hardware solutions. Recently, there has been a plethora of
workshops and tutorials focusing on benchmarking robotics
applications [12], [13], [14], [15], [16], [17], [18], [19],
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Fig. 1: A high level overview of RobotPerf. It targets
industry-grade real-time systems with complex and exten-
sible computation graphs using the Robot Operating System
(ROS 2) as its common baseline. Emphasizing adaptability,
portability, and a community-driven approach, RobotPerf
aims to provide fair comparisons of ROS 2 computational
graphs across CPUs, GPUs, FPGAs and other accelerators.

[20], [21], [22], and while benchmarks for specific robotics
algorithms [23], [24] and certain end-to-end robotic appli-
cations, such as drones [25], [26], [27], [28], do exist, the
nuances of analyzing general ROS 2 computational graphs
on heterogeneous hardware is yet to be fully understood.

In this paper, we introduce RobotPerf, an open-source and
community-driven benchmarking tool designed to assess the
performance of robotic computing systems in a standardized,
architecture-neutral, and reproducible way, accommodating
the various combinations of hardware and software in dif-
ferent robotic platforms (see Figure 1). RobotPerf focuses
on evaluating robotic workloads in the form of ROS 2
computational graphs on a wide array of hardware setups,
encompassing a complete robotics pipeline and emphasizing
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real-time critical metrics. The framework incorporates two
distinct benchmarking methodologies that utilize various
forms of instrumentation and ROS nodes to capture critical
metrics in robotic systems. These approaches are: black-box
testing, which measures performance by eliminating upper
layers and replacing them with a test application, and grey-
box testing, an application-specific measure that observes
internal system states with minimal interference. The frame-
work is user-friendly, easily extendable for evaluating custom
ROS 2 computational graphs, and collaborates with major
hardware acceleration vendors for a standardized benchmark-
ing approach. It aims to foster research and innovation as an
open-source project. We validate the framework’s capabilities
by conducting benchmarks on diverse hardware platforms,
including CPUs, GPUs, and FPGAs, thereby showcasing
RobotPerf’s utility in drawing valuable performance insights.
RobotPerf’s source code and documentation are available
at https://github.com/robotperf/benchmarks
and its methodologies are currently being used in industry
to benchmark industry-strength, production-grade systems.

II. BACKGROUND & RELATED WORK
A. The Robot Operating System (ROS and ROS 2)

ROS [10] is a widely-used middleware for robot devel-
opment that serves as a structured communications layer
and offers a comprehensive suite of additional functionalities
including: open-source packages and drivers for various
tasks, sensors, and actuators, as well as a collection of
tools that simplify development, deployment, and debugging
processes. ROS enables the creation of computational graphs
(see Figure 1) that connect software processes, known as
nodes, through topics, facilitating the development of end-
to-end robotic systems. Within this framework, nodes can
publish to or subscribe from topics, enhancing the modularity
of robotic systems.

ROS 2 builds upon ROS and addresses many of its key
limitations. Constructed to be industry-grade, ROS 2 adheres
to industry Data Distribution Service (DDS) and Real-Time
Publish Subscribe (RTPS) standards [29]. Based on the
Data Distribution Service (DDS) standard, it enables fine-
grained, direct, inter- and intra-node communication, enhanc-
ing performance, reducing latency, and improving scalability.
Importantly, these improvements are also designed to support
hardware acceleration [30], [5]. Over 600 companies have
adopted ROS 2 and its predecessor ROS in their production
environments, underscoring its significance and widespread
adoption in the industry [11].

ROS 2 also provides standardized APIs to connect user
code through language-specific client libraries, rclcpp and
rclpy, which handle the scheduling and invocation of call-
backs such as timers, subscriptions, and services. Without a
ROS Master, ROS 2 creates a decentralized framework where
nodes discover each other and manage their own parameters.

B. Robotics Benchmarks

There has been much recent development of open-source
robotics libraries and associated benchmarks demonstrat-
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OMPL Benchmark [31]
MotionBenchMaker [32]
OpenCollBench [33]
BARN [34]
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TABLE I: Comparative evaluation of representative existing
robotics benchmarks with RobotPerf across essential charac-
teristics for robotic systems.

ing their performance as well as a plethora of workshops
and tutorials focusing on benchmarking robotics applica-
tions [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22]. However, most of these robotics benchmarks focus on
algorithm correctness (functional testing) in the context of
domain specific problems, as well as end-to-end latency on
CPUs [31], [32], [33], [34], [371, [35], [38], [36], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48]. A few works
also analyze some non-functional metrics, such as CPU
performance benchmarks, to explore bottleneck behaviors in
selected workloads [23], [24], [49].

Recent work has also explored the implications of oper-
ating systems and task schedulers on ROS 2 computational
graph performance through benchmarking [50], [51], [52],
[53], [54] as well as by optimizing the scheduling and com-
munication layers of ROS and ROS 2 themselves [55], [56],
[57], [58], [59], [60], [61], [62]. These works often focused
on a specific context or (set of) performance counter(s).

Finally, previous work has leveraged hardware acceler-
ation for select ROS Nodes and adaptive computing to
optimize the ROS computational graphs [63], [64], [65],
[66], [67], [68], [69], [70], [71], [72], [73], [74], [75],
[76], [771, [78], [79]. However, these works do not provide
comprehensive frameworks to quickly analyze and evaluate
new heterogeneous computational graphs except for two
works that are limited to the context of UAVs [25], [28].

Research efforts most closely related to our work include
ros2_tracing [80] and RobotCore [5]. ros2_tracing
provided instrumentation that demonstrated integration with
the low-overhead LTTng tracer into ROS 2, while RobotCore
illuminates the advantages of using vendor-specific tracing
to complement ros2_tracing to assess the performance
of hardware-accelerated ROS 2 Nodes. Building on these


https://github.com/robotperf/benchmarks

two specific foundational contributions, RobotPerf offers a
comprehensive set of ROS 2 kernels spanning the robotics
pipeline and evaluates them on diverse hardware.

Table I summarizes our unique contributions. It includes
a selection of representative benchmarks from above and
provides an evaluation of these benchmarks against Robot-
Perf, focusing on essential characteristics vital for robotic
systems. We note that while our current approach focuses
only on non-functional performance benchmarking tests,
RobotPerf’s architecture and methodology can be extended
to also measure functional metrics.

III. ROBOTPERF: PRINCIPLES & METHODOLOGY

RobotPerf is an open-source, industry-strength robotics
benchmark for portability across heterogeneous hardware
platforms. This section outlines the important design prin-
ciples and describes the implementation methodology.

A. Non-Functional Performance Testing

Currently, RobotPerf specializes in non-functional perfor-
mance testing, evaluating the efficiency and operational char-
acteristics of robotic systems. Non-functional performance
testing measures those aspects not belonging to the system’s
functions, such as computational latency, memory consump-
tion, and CPU usage. In contrast, traditional functional
performance testing looks into the system’s specific tasks and
function, verifying its effectiveness in its primary goals, like
the accuracy of the control algorithm in following a planned
robot’s path. While functional testing confirms a system
performs its designated tasks correctly, non-functional testing
ensures it operates efficiently and reliably.

B. ROS 2 Integration & Adaptability

RobotPerf is designed specifically to evaluate ROS 2
computational graphs, rather than focusing on independent
robotic algorithms. We emphasize benchmarking ROS 2
workloads because the use of ROS 2 as middleware allows
for the easy composition of complex robotic systems. This
makes the benchmark versatile and well-suited for a wide
range of robotic applications and enables industry, which is
widely using ROS, to rapidly adopt RobotPerf.

C. Platform Independence & Portability

RobotPerf allows for the evaluation of benchmarks on
a variety of hardware platforms, including general-purpose
CPUs and GPUs, reconfigurable FPGAs, and specialized ac-
celerators (e.g., ray tracing accelerators [81]). Benchmarking
robotic workloads on heterogeneous platforms is vital to
evaluate their respective capabilities and limitations. This fa-
cilitates optimizations for efficiency, speed, and adaptability,
as well as fine-tuning of resource allocations, ensuring robust
and responsive operation across diverse contexts.

D. Flexible Methodology

We offer grey-box and black-box testing methods to suit
different needs. Black-box testing provides a quick-to-enable
external perspective and measures performance by eliminat-
ing the layers above the layer-of-interest and replacing those

CRITERIA Grey-Box Black-Box
PRECISION Utilizes tracers from in-  Limited to ROS 2 mes-
code instrumentation. sage subscriptions.
PERFORMANCE  Low overhead. Driven by ~ Restricted to ROS 2 mes-
kernelspace. sage callbacks. Recorded
by userspace processes.
FLEXIBILITY Multiple event types. Limited to message sub-

scriptions in current im-
plementation.

Standard ROS 2 APIs.
Custom JSON format.
Tests unmodified soft-
ware with minor node
additions.

Modifies the computa-
tional graph adding extra
dataflow.

PORTABILITY Requires a valid tracer.
Standard format (CTF).
Requires code modifica-
tions and data postpro-
cessing.

Does not modify the
computational graph.

EASE OF USE

REAL-ROBOTS

TABLE II: Grey-box vs. black-box benchmarking trade-offs.

with a specific test application. Grey-box testing provides
more granularity and dives deeper into the internal workings
of ROS 2, allowing users to generate more accurate measure-
ments at the cost of increased engineering effort. As such,
each method has its trade-offs, and providing both options
enables users flexibility. We describe each method in more
detail below and highlight takeaways in Table II.

1) Grey-Box Testing: Grey-box testing enables precise
probe placement within a robot’s computational graph, gen-
erating a chronologically ordered log of critical events using
a tracer that could be proprietary or open source, such
as LTTng [82]. As this approach is fully integrated with
standard ROS 2 layers and tools through ros2_tracing, it
incurs a minimal average latency of only 3.3 us [80], making
it well-suited for real-time systems. With this approach,
optionally, RobotPerf offers specialized input and output
nodes that are positioned outside the nodes of interest to
avoid the need to instrument them. These nodes generate
the message tracepoints upon publish and subscribe events
which are processed to calculate end-to-end latency.

2) Black-Box Testing: The black-box methodology uti-
lizes a user-level node called the MonitorNode to evaluate
the performance of a ROS 2 node. The MonitorNode sub-
scribes to the target node, recording the timestamp when each
message is received. By accessing the propagated ID, the
MonitorNode determines the end-to-end latency by com-
paring its timestamp against the P1laybackNode’s recorded
timestamp for each message. While this approach does not
need extra instrumentation, and is easier to implement, it
offers a less detailed analysis and alters the computational
graph by introducing new nodes and dataflow.

E. Opaque Performance Tests

The requirement for packages to be instrumented directly
within the source code poses a challenge to many bench-
marking efforts. To overcome this hurdle, for most bench-
marks, we refrain from altering the workloads of interest and,
instead, utilize specialized input and output nodes positioned
outside the primary nodes of concern. This setup allows for
benchmarking without the need for direct instrumentation of



Category Benchmark Name

Description

al_perception_2nodes
a2_rectify
a3_stereo_image_proc

a4_depth_image_proc

Graph with 2 components: rectify and resize [83], [84].
rectify component [83], [84].

Computes disparity map from left and right images [85].
Computes point cloud from rectified depth and color images [86].

Perception o ;
aS_resize resize component [83], [84].
b1 _visual_slam Visual SLAM component [87].

Localization b2_map_localization Map localization component [88].
b3_apriltag_detection Apriltag detection component [89].
cl_rrbot_joint_trajectory_controller Joint trajectory controller [90].
c2_diffbot_diff_driver_controller Differential driver controller [91].

Control c3_rrbot_forward_command_controller_position Position-based forward command controller [92].
c4_rrbot_forward_command_controller_velocity Velocity-based forward command controller [92].
c5_rrbot_forward_command _controller_acceleration  Acceleration-based forward command controller [92].
d1_xarm6_planning_and_traj_execution Manipulator planning and trajectory execution [93].
d2_collision_checking_fcl Collision check: manipulator and box (FCL [94]).

. . d3_collision_checking_bullet Collision check: manipulator and box (Bullet [95]).

Manipulation

d4_inverse_kinematics_kdl
d5_inverse_kinematics_Ima

d6_direct_kinematics

Inverse kinematics (KDL plugin [96]).
Inverse kinematics (LMA plugin [97]).
Direct kinematics for manipulator [93].

TABLE III: RobotPerf beta Benchmarks (see [98]).

the target layer. We term this methodology “opaque tests,” a
concept that RobotPerf adheres to when possible.

E Reproducibility & Consistency

To ensure consistent and reproducible evaluations, Robot-
Perf adheres to specific common robotic dataformats. In par-
ticular, it uses ROS 2 rosbags, including our own available
at https://github.com/robotperf/rosbags, as
well third-party bags (e.g., the r2b dataset [99]).

To ensure consistent data loading and finer control over
message delivery rates, we drew inspiration from [100].
Our computational graphs incorporate modified and im-
proved DataloaderNode and PlaybackNode imple-
mentations, which can be accessed at https://github
.com/robotperf/ros2_benchmark. These enhanced
nodes offer improvements that report worst-case latency and
enable the reporting of maximum latency, introduce the
ability to profile power consumption and so forth.

G. Metrics

We focus on three key metrics: latency, throughput and
power consumption including energy efficiency. Latency
measures the time between the start and the completion of
a task. Throughput measures the total amount of work done
in a given time for a task. Power measures the electrical
energy per unit of time consumed while executing a given
task. Measuring energy efficiency (or performance-per-Watt)
captures the total amount of work (relative to either through-
put or latency) that can be delivered for every watt of power
consumed and is directly related to the runtime of battery
powered robots [25].

H. Current Benchmarks and Categories

RobotPerf beta [98] introduces benchmarks that cover
the robotics pipeline from perception, to localization, to

control, as well as dedicated benchmarks for manipulation.
The full list of benchmarks in the beta release can be
found in Table III. Aligned with our principles defined above,
each benchmark is a self-contained ROS 2 package which
describes all dependencies (generally other ROS packages).
To facilitate reproducibility, all benchmarks are designed to
be built and run using the common ROS 2 development
flows (ament build tools, colcon meta-build tools, etc.).
Finally, so that the benchmarks can be easily consumed by
other tools, a description of each benchmark, as well as its
results, is defined in a machine-readable format. As such,
accompanying the package .xml and CMakeLists.txt
files required for all ROS packages, a YAML file named
benchmark.yaml is in the root of each benchmark which
describes the benchmark and includes accepted results.

1. Run Rules

To ensure the reliability and reproducibility of the perfor-
mance data, we adhere to a stringent set of run rules. First,
tests are performed in a controlled environment to ensure
that performance data is not compromised by fluctuating
external parameters. As per best practices recommended by
ros2_tracing [80], we record and report settings like
clock frequency and core count. Second, we look forward
to the possibility of RobotPerf being embraced by the
community and have results undergo peer review, which can
contribute to enhancing reproducibility and accuracy. Finally,
we aim to avoid overfitting to specific hardware setups or
software configurations by encompassing a broad spectrum
of test scenarios.

IV. EVALUATION

We conduct comprehensive benchmarking using Robot-
Perf to evaluate its capabilities on three key aspects vital for
a robotics-focused computing benchmark. First, we validate
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the framework’s capacity to provide comparative insights
across divergent heterogeneous platforms from edge devices
to server-class hardware. Second, we analyze the results
to understand RobotPerf’s ability to guide selection of the
optimal hardware solution tailored to particular robotic work-
loads. Finally, we assess how effectively RobotPerf reveals
the advantages conferred by hardware and software acceler-
ation techniques relative to general-purpose alternatives. All
of our results and source code can be found open-source at:
https://github.com/robotperf/benchmarks.

A. Fair and Representative Assessment of Heterogeneity

Assessing hardware heterogeneity in robotic applications
is imperative in the ever-evolving field of robotics. Different
robotic workloads demand varying computational resources
and efficiency levels. Therefore, comprehensively evaluating
performance across diverse hardware platforms is crucial.

We evaluated the RobotPerf benchmarks over a wide
list of hardware platforms, including general-purpose CPUs
on edge devices (e.g., Qualcomm RB5Y), server-class CPUs
(e.g., Intel 17-8700), and specialized hardware accelerators
(e.g., AMD Kria KR260). Figure 3 illustrates benchmark
performance in robotics per category of workload (percep-
tion, localization, control, and manipulation) using radar
plots, wherein the different hardware solutions are depicted
together alongside different robotic workloads per category.
Each hardware solution is presented with a different color,
with smaller values and areas representing better perfor-
mance in the respective category. Given our ability to
benchmark 18 platforms (bottom of Figure 3), RobotPerf is
capable of benchmarking heterogeneous hardware platforms
and workloads, paving the way for community-driven co-
design and optimization of hardware and software.

B. Quantitative Approach to Hardware Selection

The rapid evolution and diversity of tasks in robotics
means we need to have a meticulous and context-specific ap-
proach to computing hardware selection and optimization. A
“one-size-fits-all” hardware strategy would be an easy default
selection, but it fails to capitalize on the nuanced differences
in workload demands across diverse facets like perception,
localization, control, and manipulation, each exhibiting dis-
tinctive sensitivities to hardware capabilities. Therefore, a
rigorous analysis, guided by tools like RobotPerf, becomes
essential to pinpoint the most effective hardware configura-
tions that align well with individual workload requirements.

The results in Figure 3 demonstrate the fallacy of a “one-
size-fits-all” solution. For example, focusing in on the latency
radar plot for control from Figure 3 (col 3, row 1), we see
that the 17-12700H (I7H) outperforms the NVIDIA AGX
Orin Dev. Kit (NO) on benchmarks C1, C3, C4, and C5,
but is 6.5 slower on benchmark C2. As such, by analyzing
data from the RobotPerf benchmarks, roboticists can better
determine which hardware option best suits their needs given
their specific workloads and performance requirements.

One general lesson learned while evaluating the data is
that each workload is unique, making it hard to general-
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Fig. 2: Benchmark comparison of perception latency (ms)
on AMD’s Kria KR260 with and without the ROBOTCORE
Perception accelerator. The benchmarks used are a1, a2, and
a5 as defined in Table III. We find that hardware acceleration
can enable performance gains of as much as 11.5x.

ize across both benchmarks and categories. To that end,
RobotPerf results help us understand how the use of various
hardware solutions and dedicated domain-specific hardware
accelerators significantly improves the performance.

C. Rigorous Assessment of Acceleration Benefits

In the rapidly advancing field of computing hardware,
the optimization of algorithm implementations is a crucial
factor in determining the success and efficiency of robotic
applications. The need for an analytical tool, like RobotPerf,
that facilitates the comparison of various algorithmic imple-
mentations on uniform hardware setups becomes important.

Figure 2 is a simplified version of Figure 3, depicting
AMD’s Kria KR260 hardware solution in two forms: the
usual hardware and a variant that leverages a domain-
specific hardware accelerator (ROBOTCORE Perception, a
soft-core running in the FPGA for accelerating perception
robotic computations). The figure demonstrates that hardware
acceleration can enable performance gains of as much as
11.5%x (from 173 ms down to 15 ms for benchmark a5). We
stress that the results obtained here should be interpreted
according to each end application and do not represent a
generic recommendation on which hardware should be used.
Other factors, including availability, the form factor, and
community support, are relevant aspects to consider when
selecting a hardware solution.

V. CONCLUSION AND FUTURE WORK

RobotPerf represents an important step towards stan-
dardized benchmarking in robotics. With its comprehensive
evaluation across the hardware/software stack and focus on
industry-grade ROS 2 deployments, RobotPerf can pave the
way for rigorous co-design of robotic hardware and algo-
rithms. As RobotPerf matures with community involvement,
we expect it to compare CPU, GPU and FPGA, exploring
their power consumption and flexibility in augmenting real-
world robotic computations. With a standardized robotics
benchmark as a focal point, the field can make rapid progress
in delivering real-time capable systems that will unlock the
true potential of robotics in real-world applications.
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Fig. 3: Benchmarking results on diverse hardware platforms across perception, localization, control, and manipulation
workloads defined in RobotPerf beta Benchmarks. Radar plots illustrate the latency, throughput, and power consumption
for each hardware solution and workload, with reported values representing the maximum across a series of runs. The
labels of vertices represent the workloads defined in Table III. Each hardware platform and performance testing procedure
is delineated by a separate color, with darker colors representing Black-box testing and lighter colors Grey-box testing. In
the figure’s key, the hardware platforms are categorized into four specific types: general-purpose hardware, heterogeneous
hardware, reconfigurable hardware, and accelerator hardware. Within each category, the platforms are ranked based on their
Thermal Design Power (TDP), which indicates the maximum power they can draw under load. The throughput values for
manipulation tasks and power values for localization tasks have not been incorporated into the beta version of RobotPerf.
As RobotPerf continues to evolve, more results will be added in subsequent iterations.
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