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ABSTRACT
To demonstrate the value of machine learning based smart health
technologies, researchers have to deploy their solutions into com-
plex real-world environments with real participants. This gives rise
to many, oftentimes unexpected, challenges for creating technol-
ogy in a lab environment that will work when deployed in real
home environments. In other words, like more mature disciplines,
we need solutions for what can be done at development time to
increase success at deployment time. To illustrate an approach and
solutions, we use an example of an ongoing project that is a pipeline
of voice based machine learning solutions that detects the anger
and verbal conflicts of the participants. For anonymity, we call it
the XYZ system. XYZ is a smart health technology because by noti-
fying the participants of their anger, it encourages the participants
to better manage their emotions. This is important because being
able to recognize one’s emotions is the first step to better managing
one’s anger. XYZ was deployed in 6 homes for 4 months each and
monitors the emotion of the caregiver of a dementia patient. In this
paper we demonstrate some of the necessary steps to be accom-
plished during the development stage to increase deployment time
success, and show where continued work is still necessary. Note
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that the complex environments arise both from the physical world
and from complex human behavior.
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1 INTRODUCTION
Smart health research teams often develop novel machine learning
technologies. To prove the value of the technologies, the research
teams have to deploy the solutions into a complex environment
such as a smart home [3, 13, 18, 26]. However, the aforementioned
works do not describe the problems related to the transition from
the development stage to the deployment stage. In other words,
during the development stage, the research teams try to develop
their solution in an environment, usually a lab environment and/or
a controlled home environment, which is less complex than the
environment in which the technology is going to be deployed. It
is well known that when new technology is actually deployed in
real complex environments, issues previously unseen in the less
complex environments are going to occur, especially for long-term
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deployments. This paper describes the XYZ System, a pipeline of
voice-based machine learning solutions for in-home monitoring
of the emotion and verbal conflict experienced by a caregiver of
a dementia patient. XYZ is considered a smart home technology
because it helps caregivers of dementia patients better manage
their anger by notifying them when an anger or verbal conflict is
detected. As Pena et al. [34] have discussed, one school of promoting
emotion regulation is to permit the individuals from experiencing
anger. Since people can be bad at recognizing their own emotions
[21], a smart health technology that notifies them when an anger or
verbal conflict arises is very important to their emotion regulation.

The goals of this paper are to (1) demonstrate solutions for what
are needed at pre-deployment time to increase the success of voice-
based classifiers once deployed, and (2) present lessons learned for
environmental and behavioral complexities uncovered during 4
month deployments in six homes. The main challenges of inte-
grating novel machine learning technology into complex environ-
ments are that both the physical environments and the participants’
behaviors are complicated. For a smart health technology that uses
voice for emotion detection [19], the environment is complicated
because the solution needs to address the problems of acoustic sig-
nal’s deterioration due to background noise such as birds chirping,
room reverberation due to the signal bouncing off the surface of fur-
niture, and deamplification as a result of the distance between the
human speaker and the microphone. We call these environmental
distortions acoustical realisms. Also, the television could be on and
the voice from the television adds to the complexity of detecting
the participants’ emotions. Human behavior is very complicated,
too. For example, people could be yelling across the room to ask
each other what is for dinner. They are not necessarily angry, but
yelling itself is seen as an anger event by typical emotion detection
technology. Visitors are common and for privacy the caregiver may
turn the system off and forget to turn it back on.

The gist of our solutions at pre-deployment time to ensure max-
imizing the post-deployment success of the machine learning al-
gorithms in the XYZ System is that we make sure to evaluate the
algorithms on data samples that are most similar to the samples
that the algorithms are about to encounter in the designated envi-
ronment in which the algorithms are/will be deployed. Using the
XYZ System as an example, the (acoustical) samples that the algo-
rithms in the XYZ System are about to encounter in its designated
environment (a participant’s home) are voice samples that are envi-
ronmentally distorted. It is worth-noting that some works, such as
Chen et al. [12], do consider the designated environment in which
their algorithm is going to be deployed during the pre-deployment
stage. However, they do not evaluate if their hypothesis that the
algorithm indeed performs well during post-deployment time holds
true. Unlike works such as Chen et al. [12], we perform evaluations
to show that after our rigorous pre-deployment time assessment of
the algorithms to be deployed in the designated environment, our
chosen algorithms indeed performwell during the post-deployment
stage when they are being deployed in the designated environment
(the home of a patient-caregiver dyad), which is one novelty of
this paper. A more nuanced finding of this paper is that different
acoustic components need to address different environmental re-
alisms. For example, the voice activity detection (VAD) model only
needs to deal with non-speech background noise, reverberation,

and deamplification, whereas the emotion detection model needs
to also deal with background speech (such as those from the tv)
because background speech could confound the classification of
the emotion detection model which uses speech to determine the
emotion in that speech.

The purpose of the XYZ System is that we want to help care-
givers of dementia patients to manage their anger as well as the
verbal conflict events that arise during care-giving. To achieve these
goals, the XYZ System has three add-on components: the Cloud
to which the audio clips are uploaded for safe keeping, the M2G
monitoring component that notifies the developer(s) if the XYZ
System crashes so the developer(s) can investigate the causes, and
the Recommender System using EMA, which sends messages that
are interventions or recommendations to help the caregivers man-
age their emotions and verbal conflict, if anger or verbal conflict
are detected by the XYZ System. The entirety of the XYZ System
and the three add-on components are referred to as the XYZ-W
(XYZ-Whole) System. We also present some lessons learned on
several aspects of XYZ-W.

Note that the focus of this paper is the XYZ System, not its add-
on components, so we do not evaluate how effective the add-on
components are at helping the caregiver manage their emotions and
verbal conflicts that arise during care-giving. Nonetheless, given
their essential role at helping the XYZ System achieve its goals, we
have decided to include some discussion of the add-on components
in the paper.

The contributions of this paper are based on the in-home de-
ployed XYZ-W system from six completed 4-month deploy-
ments of real caregiver-Alzheimer’s patient interactions. This
work was performed under an approved IRB. The main contribu-
tions are:

• A pre-deployment approach for improving standard and
novel acoustic technologies deployment time success.

• A pre-deployment approach to make components in the de-
ployed technology adaptable to they can be easily adjusted
during the deployment time to satisfy the needs of the par-
ticipants.

• Developing a set of privacy mechanisms that are shown to
help dyad recruitment and satisfy privacy concerns of actual
users of the system.

• Our post-deployment validation indicates that people are
not always good at recognizing their own emotions, which
reconfirms similar findings in the literature [21].

2 RELATEDWORKS
In this related works section, we discuss existing smart home tech-
nologies as well as how human behavior affects the efficacy of
smart technologies. We also briefly talk about emotion detection
and conflict detection using voice, since the XYZ system uses the
voice of its participants to detect if they are angry and if they are
in a verbal conflict.

2.1 Methodology for Deploying Smart Health
Technologies

Zeadally et al. [47] argue that deploying smart health technologies
can improve healthcare availability, cost, and access. However, there
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have not been enough works for the methodology for deploying
smart health technologies (usually in smart homes). Bellandi et al.
[4] is among the first works that propose a design methodology
that matches smart health requirements. They argued that due to
the rapidly aging world population, smart health technologies are
about to playing an even more important role in caring for the
aging population at homes. They propose that the perspective of
deploying those smart health technologies at homes should be user-
centered. To select a solution to be deployed, researchers need to
perform domain analysis (surveying the state of the art), require-
ment gathering (stakeholder elicitation), requirement integration
(determining the consistency of the requirements), and then finally
solution selection.

2.2 Human behavior that affects the efficacy of
smart technologies

There has not been enoughwork on howhuman behavior affects the
efficacy of smart technologies. A previous work [46] hypothesizes
that the perceived usefulness directly contributes to the user’s
attitude towards the technology. Nikou et al. [33] suggest that
perceived innovation and cost directly contribute to if the user will
adopt a smart technology. Perri et al. [35] point out that the attitude
of the user directly affects the adoption of smart technologies, which
we would like to extend to that their attitude directly affects the
efficacy of smart technologies as shown by the observation of a
user of our XYZ system: he was not very compliant and sometimes
pulled out the wires to the laptop on which we ran our system. As a
result, the computer was out-of-power and the system was unable
to monitor the participant’s emotion for a period.

2.3 Voice Activity Detection
There have been lots of work on voice activity detection (VAD) so
we only discuss the recent advances in the field. MarbleNet [25] uses
deep residual network consisting of blocks of 1-D time-channel sep-
arable convolution, able to achieve the state-of-the-art performance
with the advantage that the number of their parameters is signif-
icantly smaller. The robustness of MarbleNet is also extensively
studied to demonstrate that it is robust to real-world acoustical
distortions. Using teacher-student training, Dinkel et al. [17] also
strive to train a model that is robust to real-world acoustic distor-
tions. Dinkel et al. identify that traditional VAD algorithms are
trained on data devoid of such acoustic distortions, and therefore
their usage is limited to data without the acoustic distortions that
are inevitable in the real world, rending them unable to perform
well in real-world settings. Other works on VAD include Wang et
al. [44] that uses a cross channel attention based model to achieve
voice activity detection in the M2met challenge, Braun et al. [5]
that is specifically concerned about dealing with the robustness
issue of many state-of-the-art models. What is worth-noting is that,
some works developed for other purposes such as transcription,
can be used as voice activity detection models. For example, the
Google speech Recognition (GSR), a transcription service, outputs
the transcribed sentence from an audio clip if that audio clip is
speech, and it will throw an exception is the audio clip is silence. It
is worth noting that although works such as MarbleNet [25] and
Dinkel et al. [17] attempt to ensure that they work on datasets

that account for realism to be encountered in real, designated en-
vironments in which the algorithms are to be deployed, they do
not evaluate their post-deployment performances in the real, des-
ignated environments. Realisms that the VAD model deals with
usually arise from background noise such as footsteps, and the VAD
model needs to differentiate not only silence from human speech
but also those background noises from speech. The realisms that
the VAD model faces is simpler than the models that we discuss
in the later sections, the speaker identification (SID) model, the
emotion detection model, and the conflict detection model, which
needs to deal with the tv sound as the speech from the tv could
affect the classification performance of these models.

2.4 Speaker Identification
Again, the works in the field of speaker identification (SID) are
abundant, so we only discuss the recent advances in the field. Chen
et al. [10] introduce a graph-based speaker identification model that
is reliant on speaker label inference. It is particularly concerned
with the task of SID in household scenarios. WavLM [11] recog-
nizes that the speech content by by speakers contains multi-faceted
information such as the identities of the speakers, the content of the
speech, and paralinguistics. WavLM is propsoed as a pre-trained
model that can be used to be fine-tuned for the purpose of various
speech recognition tasks such as speaker identification. Snyder et
al. [40] proposes an xvector, the results of mapping variable-length
spoken clips to fixed-dimensional embeddings. Again, works such
as Chen et al. [10] evaluate their algorithms on datasets in which
the realism to be encountered in real, designated environments in
which the algorithms are to be deployed, but no post-deployment
evaluation is presented in such works to show if their approaches
to deal with the realism are successful. Realisms that the SID model
faces arise from background noise, especially the tv sounds. Note
that the realisms that the SID model needs to deal with are more
complex than the realisms that the VAD model needs to deal with,
as voice from the tv could confound the model from correctly identi-
fying the identity of the speaker in an audio clip. In other words, the
SID model needs to be able to deal with more complex background
noise (more complex acoustical realisms) than the VAD model.

2.5 Emotion Detection
There have also been a lot of work [1, 14, 15, 43] on using voice as a
modality to classify emotions. These use several datasets that have
speech files with emotion labels. EMO-DB, a dataset of the German
language [6], is a popular one for many works [16, 42]. It consists
of six emotion categories such as anger, sadness, and happiness
performed by actors. Another popular dataset is RAVDESS [30] that
consists not only of the emotional utterances, but also video footage
of emotional speech. CREMA-D [8], like RAVDESS, contains both
audio and audio-video samples. Despite the variety in modalities,
since some datasets like EMO-DB have only audio samples, and
others like RAVDESS have both audio and video samples, the emo-
tions that they have are largely in common. The common emotion
categories in the datasets are happiness, anger, sadness, and neu-
trality. One common problem with the emotional utterance datasets
is that they are often collected in controlled studio environments
in which realisms expected in a real, designated environment do
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not exist. Algorithms trained on those samples are shown not to
be robust when deployed in the real world [19]. There have been
works that attempt to address environmental distortions such as
reverberation, deamplification, and the background noise at pre-
deployment time [19, 37, 38, 45]. However, they do not confirm at
post-deployment stage if their strategies of addressing the realisms
work. The realisms that the emotion detection model needs to ad-
dress, in addition to deamplification, reverberation, and common
indoor background noise, are tv sounds. An audio clip produced
by a registered speaker could include background sounds that are
from the tv, and the speech from the tv could confound the emo-
tion detection model from making the correct prediction as the
speech from the tv could be of a different emotion than the speech
produced by the registered speakers.

2.6 Conflict Detection
There have been several attempts to detect verbal conflict using
sound signals that a microphone picks up from the ambient en-
vironment. A work [28] creates verbal conflict between pairs of
a student and an actor who act out conflict. From the generated
conflict episode, it is observed that overlapped speech is an im-
portant indicator of interpersonal conflict [28]. However, they did
not create a model of automatic conflict detection based on their
conclusion. Based on the fact that repetition of parts of speech,
such as syllables, phrases and words, is indicative of interpersonal
conflict, another work [29] develops a repetition detection model
that uses the audio files collected by the on-body sensors of po-
lice officers to detect conflict. However, the interpersonal conflicts
that police officers encounter during their jobs are not the same
as every-day interpersonal conflicts that take place in households
between arguing family members. The state-of-the-art modules on
automatic conflict detection using speech [9, 22], achieve satisfac-
tory performance on their respective datasets, but their approaches
are not evaluated to demonstrate if acoustic distortions of noise,
distance, and reverberation affect the results. As a result, the auto-
matic detection of every-day harmful interpersonal conflicts among
people in home environments remains unsolved. Again, in addition
to the realisms such as reverberation, common indoor background
noise, and deamplification, the conflict detection model, just as the
emotion detection model, needs to deal with the realisms that are
the tv sound: the characters on the tv might be in a verbal conflict
(as the background sound for the participants whose conflict we
want to monitor), which can confound the conflict detection model.

3 AN OVERVIEW OF THE XYZ SYSTEM
In this section, we describe the XYZ System, which includes the
voice activity detection (VAD) algorithm, the speaker identification
(SID) algorithm, the emotion detection algorithm, and the conflict
detection algorithm. Three out of the four algorithms are off-the-
shelf. The VAD algorithm is Google’s transcription services. The
SID algorithm is the WavLM algorithm developed by Microsoft
[11]. The emotion detection algorithm is developed by SpeechBrain
[36]. We developed the conflict detection by ourselves, and the
reference to the conflict detection paper is left blank to preserve
our anonymity. In later sections of this paper, we thoroughly tested
the off-the-shelf algorithms to make sure that they meet our needs

Figure 1: Overview of the XYZ system comprised of four
main components: the voice activity detection (VAD) model,
the speaker identification (SID) model, the emotion detec-
tion model, and the conflict detection model.

in the XYZ system. We also argue in later sections that if there exist
algorithms that can satisfy the needs of a system, there is no need
to develop those algorithms again by the researchers themselves;
time and resources can be spared to develop the algorithms that are
needed by the system but not available as off-the-shelf ones (such
as our conflict detection model). In other words, there is no need to
reinvent the wheel.

In Figure 1, the microphone placed in a central place in a room
constantly listens to the ambient environment. The audio stream
is sliced into 5-second audio clips and send to the voice activity
detection (VAD) model to decide if a given clip contains human
voice. The choice of each audio clip being 5-second is based on the
observation from previous works that 5-second is long enough to be
indicative of the speakers’ emotions [19]. The XYZ System discards
those audio clips that are invalid; i.e., they contain no human voice.
The valid audio clips are sent to the speaker identification (SID)
model to detect if the audio clips contain the voice of registered
speakers. If yes, they are sent to the emotion detection and conflict
detection models, in parallel. The two models each produce vectors
in respect to if the speaker(s) in an audio clip is/are angry or is/are
in a verbal conflict.

Note that the purpose of this paper is to demonstrate the neces-
sary steps to be accomplished during the development stage before
deployment to increase deployment time success, and show where
continued work is still necessary. The purpose of this paper is not
about how novel the algorithms used in the XYZ System are, al-
though we show that the algorithms are effective at doing their
respective jobs and satisfying the research needs.

4 THE ADD-ON COMPONENTS TO THE XYZ
SYSTEM

In this section, we describe three add-on components for the core
XYZ system. Note that the efficacy and effectiveness of the add-
on components are not included in this paper because the main
focus of the paper is the XYZ system. The add-on components
exist to assist the XYZ system by storing the audio clips classified
by the XYZ system (in the cloud), sending the identified anger
to the caregiver for them for them to be more attentive to their
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Figure 2: Overview of the XYZ system with add-on compo-
nents. The add-on components are the Recommender Sys-
tem, the Cloud, and the M2G (Monitor) system.

own emotions, and notifying the developers when the XYZ system
crashes. In addition to those assistive functionalities, one of the add-
ons, the Recommender System, recommends tips to the caregivers
to help them manage their anger. The entirety of the XYZ system
and its add-ons is referred to as the XYZ-W (XYZ-Whole) System.
An overview of the XYZ-W system is described in Figure 2.

One of the add-on components is the Recommender System with
the EMA. Recommender system uses reinforcement learning to de-
cide if a conflict/anger management tip should be sent and what tip
to send. The EMA is a smartphone app developed to send messages
to the caregivers. Another add-on component, the Cloud keeps
track of the raw acoustic signal files, the SID module’s detection
on the identity of the speaker, the emotion classification module’s
classification result, the conflict detection module’s detection result,
and the recommendations and user responses.

The final add-on component is the M2G System [31] that moni-
tors the other three components to make sure that they are alive. If
one or more of the other three components crash, the M2G system
restarts the component(s) and sends the developers an email to
announce the crash so the developers can investigate the causes.

5 EVALUATIONS
Many speech processingworks have collected or augmented datasets
with real world sounds. Good solutions are usually then developed.
But, in many cases the resultant datasets have limited in-the-wild
sounds so where they actually work is limited, and many times the
solutions are not validated in-the-wild, but only on the datasets.

Our pre-deployment strategies are to significantly increase the
collected and augmented datasets to increase comprehensiveness
of the situations which are modeled, and specialize the datasets
to a specific speech module (if needed). In pre-deployment, we
also choose a set of “best” solutions from the literature and using
the comprehensive datasets, determine which ones work. If one or
more off-the-shelf solution work, the best one is chosen. Below we
show that often many off-the-shelf solutions do not work, but for
many common speech tasks there are good solutions available, but

it is necessary to verify that. We don’t want to reinvent the wheel.
Then, in post deployment we validate the resulting performance
on real data, a step often not performed.

Speech processing is typically performed in a pipeline depend-
ing on the overall purpose. In our system we need voice activity
detection, speaker identification, emotion detection, and conflict
detection. There are commonalities and unique aspects to each of
these stages so the pre-deployments strategies must account for
them. We now consider each of these 4 stages in more detail. Specif-
ically, we briefly reiterate what the components are, why they are
important, and demonstrate what we did at pre-deployment time to
maximize the deployment time success based on post-deployment
data (how we evaluated them at pre-deployment time). In all cases
the acoustic solutions had to address the real world complexities
such as reverberation, deamplification, and the many types of noise
found in real homes over long deployments. The relative success of
the acoustic solutions (at the post-deployment time) confirms our
hypothesis that it is possible to perform comprehensive and realistic
pre-deployment testing to increase post deployment success.

5.1 Voice Activity Detection
The VAD model filters silence and other sounds that are not pro-
duced by the human vocal tract. Since the acoustic system is con-
stantly listening to the environment, we do not want to activate the
emotion and conflict classifiers when an input sound window con-
tains no human speech. As a result, the VAD model is an important
and necessary component in the XYZ System. In this Section, we
describe testing on the VAD model for the question: Is it possible
to perform comprehensive and realistic pre-deployment testing to
improve post-deployment success? Note that the acoustic realisms
that the VAD model faces are deamplification, reverberation, and
(non-speech) background noise, so in our pre-deployment stage
assessment we seek to find a VAD solution that is robust against
these three types of acoustical realisms.

5.1.1 Pre-deployment Stage Assessment. During pre-deployment
time, we first looked into several state-of-the-art VAD algorithms.
In particular, we studied the performance of a set of SOTA VAD
algorithms on the Aurora-2 database [23]. The performance of the
algorithms on the Aurora-2 database is a good indicator of how they
might perform in the real world because Aurora-2’s speech samples
are mixed with noise collected from realistic settings such as streets,
airports, and cars. Table 1 is a list of existing SOTA VAD algorithms’
accuracy scores on the testing set of Aurora-2. Unfortunately, as we
can see, the highest-performing one is rVAD, which only achieves
an accuracy score of 66.23%, which is far from being usable in the
real world. In other words, there exists solutions in the literature
that do not work on datasets with deamplification, reverberation,
and background noise. It is good to discover that these solutions
are not likely to work at post-deployment time, because this helps
us filter out existing solutions so that we won’t use those solutions.

However, there was another algorithm, the Google Speech Recog-
nition (GSR) algorithm, that had not been evaluated on a dataset
that contained the three environmental distortions: reverberation,
deamplification, and background noise. As a result, we next evalu-
ated the Google Speech Recognition solution. we aimed to evaluate
it in a comprehensive way to demonstrate that it would be robust
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Existing SOTA VAD Accuracy
VQVAD 45.66%
Sohn et al. 31.21%

Kaldi Energy VAD 11.72%
DSR AFE 40.07%
rVAD 66.23%

Table 1: Evaluation of existing VAD algorithms on the
Aurora-2 database. This Table is reported by Tan et al. [41].

against environmental distortions such as reverberation, deamplifi-
cation, and background noise. Again, this is to set up the necessary
condition to prove our hypothesis that a solution, during the pre-
deployment stage, must be able to deal with the unique challenges
given the real, designated environment in which it will be deployed.

To do so, we collected a dataset that contains diverse environ-
mental distortions: first, we collected the clean samples - samples
that are not environmentally distorted, by having an individual
talk next to the microphone for 5 minutes. The 5-minute clip was
then sliced into 60 5-second segments, each of which is individu-
ally labeled as positive if it contained a human voice, or negative
if it did not contain human voices. Note that the individual took
long pauses intentionally to make sure that there were negative
samples. Second, we collected the audio clips that were deamplified
and contained background noise. To do so, we took copies of the
clean samples. For each of the copies, we randomly deamplify them
by m decibels (0 < m < 12) as per the practice of a previous work
on emotion detection [19]. Then, we randomly picked household
sounds from the household ambience dataset [32]. Table 2 lists the
events that occur in the dataset. Note that each of the ambience
sounds is greater than 5 seconds, so we randomly picked a segment
from it that was 5-seconds long, and overlaid it with a deamplified
clip. We repeated this process for all 60 deamplified clips. Third,
we created the data for reverberated speech. To do so, we took
another set of copies of the clean samples, and overlaid each of
them with reverberation that was described by the combination of
the three parameters: the wet/dry ratio 𝑟 , diffusion 𝑑 , and decay
factor 𝑓 . Finally, we created samples that are deamplified, noise-
contaminated, and reverberated. To do so, we took a set of copies
of the 60 deamplified and noise-contaminated samples, and over-
laid them with the same reverberation effect as the samples that
only contained reverberation effect and nothing more. In the end,
we have 60 clean samples, 60 deamplified and noise-contaminated
samples, 60 reverberated samples, and 60 samples that had all three
environmental distortions. As a result, we claim that we created
a dataset that was comprehensive enough to account for all three
kinds of environmental distortions.

We evaluated GSR on the dataset that we just created. GSR
achieved an accuracy score of 95.83%, correctly classifying 230
out of the 240 samples each of which accounted for the environ-
mental distortions to a certain degree. The high performance led
us to decide to deploy GSR as our VAD model since, during the
pre-deployment stage assessment, it is shown to be robust against
the challenges that it is about to encounter in the real, designated

Event Instances
(object) rustling 60
(object) snapping 57

cupboard 40
cutlery 76
dishes 151
drawers 51

glass jingling 36
object impact 250
people walking 54
washing dishes 84

water tap running 47
Table 2: Events that are present in the background noise col-
lected from real homes from the dataset [32]. All of themare
covered in the process of contaminating audio samples with
background noise. Note that this list do not include sounds
from the tv, which are very important to make sure the ro-
bustness of the emotion detection model and conflict detec-
tion model.

environment: reverberation, background noise, and deamplifica-
tion.

5.1.2 Post-deployment Stage Assessment. Using post-deployment
data on six completed dyads, we validate how well the chosen
solution worked in practice. Table 3 shows the evaluation results of
the VADmodel on the dyads.We randomly select samples generated
by each dyad during their deployment, and have human labelers
label them if they are of human speech or not. We obtained 100
samples for all the dyads. The high performance of the VAD model
indicates that this part of our system is highly effective at filtering
out non-human speech samples such as background music (without
lyrics) and footsteps. It is noted that the VAD does not filter out TV
sounds if there is human speech in the sounds, such the voices of
actors or news anchors. These unwanted sounds are filtered by the
next model, SID.

The VAD model achieves an accuracy score of 94.0% to 100%
on the six dyads. The high performance on post-deployment data
validates our choice of the Google Speech Recognition in the pre-
deployment phase. This implies that this VAD algorithm was origi-
nally made very robust to real world complexities. The high per-
formance also indicates that, in order for the deployment to be
successful, smart health groups using audio should perform pre-
deployment tests with comprehensive real-world distortions. In ad-
dition, the high performance suggests that our hypothesis holds true
- recall that our hypothesis is that, during the pre-deployment stage
assessment, an about-to-be-deployed algorithm must be proven
to overcome the challenges that are perceived to be present in
the real, designated environment in order for it to perform well
in said environment. The high performance on post-deployment
data also indicates that it is sometimes possible to perform com-
prehensive and realistic pre-deployment testing to improve VAD
post-deployment success.
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Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
GSR 100% 100% 94.0% 95.0% 100% 98.0%

Table 3: The evaluation results for the voice activity detec-
tion model on the dyads. The high accuracy scores achieved
from the dyads indicate that the VAD algorithm (Google
Speech Recognition) is highly effective at differentiating
non-speech from human speech audio samples.

5.2 Speaker Identification (SID)
The SID model determines the identity of a speaker. The SID is
a crucial part of the Acoustic System because we only want the
voices of the caregiver and patient to be sent to the emotion and
conflict detection models. However, in real deployments, voices
from the TV and visitors must be filtered out. In this Section, we
test SID model to answer this question: is it possible to perform
comprehensive and realistic pre-deployment testing to improve
post-deployment success? Note that the acoustical realisms that
the SID faces, in addition to (non-speech) background noise, re-
verberation, and deamplification, also include sounds from the tv
such as the dialogues from tv characters, for the presence of an-
other person’s voice in an audio sample could confuse the speaker
identification model.

5.2.1 Pre-deployment Stage Assessment. During pre-deployment
time, we investigated a state-of-the-art SID algorithm, the Google
Speaker Identification API. However, the API asks us to input the
maximum number of speakers there can be in a clip. This is im-
practical because a dyad can have the TV on and there could be
many people’s voices from the TV, or there may be multiple visi-
tors. It is good to discover that this solution is not likely to work
at post-deployment time, because this helps us filter out existing
solution(s).

Now we describe how we test to make sure the about-to-be-
deployed SID algorithm developed by Microsoft [11] is robust to
environmental distortions such as reverberation, background noise,
and deamplification. Again, this is to verify our hypothesis that
for an algorithm to be successful in the real, designated environ-
ment, it must be able to overcome the challenges present in the real,
designated environment during the pre-deployment stage. In our
case, the challenges are reverberation, deamplification, non-speech
background noise and TV sounds. Specifically, we have two per-
sons, P1 and P2, each of whom spoke next to the microphone for 2.5
minutes. Then, for each of their voice files, we sliced it into 28 audio
samples. Because these 56 (28×2) samples were collected when the
speakers were right next to the microphone, they were considered
clean speech, free of the three types of environmental distortions.
We needed to craft environmentally distorted samples out of the
56 clean samples to ensure that the testing samples accounted for
both clean and environmentally distorted samples. To do so, we
copy each of the 56 clips and deamplify them by randomly choos-
ing a real number between 0 and 12 decibels. Then, we randomly
chose a noise clip from Table 2 as well as TV sounds we recorded
using a microphone, out of which we randomly chose a consecutive

5-second segment to be overlaid with one of the copies. This guar-
anteed samples that were deamplified and contaminated with noise,
and the last step was to reverberate it. Again, the reverberation
effect is described by the three parameters: the wet/dry ration 𝑟 ,
diffusion 𝑑 , and decay factor 𝑓 , as per the practice of a previous
work [37]. When we reverberated a (noise-contaminated and deam-
plified) copy, the values of 𝑟 , 𝑑 , and 𝑓 are randomly chosen. In total,
we had 112 samples, 56 of which belonged to P1 and the other 56
belonged to P2. We fed the 112 samples to our SID model. The SID
model achieves an f1 score of 85.7% on P1 and 92.8% on P2.
The high performance of the SID model led us to believe that it was
reasonably robust to reverberation, deamplification, background
noise, and TV sound.

5.2.2 Post-deployment Stage Assessment. To validate post-deployment
success, from all audio samples that our speaker identification algo-
rithm identifies to contain the voice of the caregiver or the patient,
or both, we randomly chose 28 from the first dyad, 28 from the
second dyad, and 28 from the third dyad, 100 from the fourth dyad,
80 from the fifth dyad, and 100 from the sixth dyad. The results
are reported in Table 4. In the following sentences we describe
how we obtain the f1 scores in Table 4. For a sample, if it only
contains the voice of the caregiver, then it is labeled as belonging to
the caregiver; it if only contains the voice of the patient, then it is
labeled as belonging to the patient. If it contains voices from both
the caregiver and patient, then it is labeled as belonging to both.
Otherwise, it labeled as belonging to neither. With this labeling
scheme, we obtain the positives and negatives of the caregiver’s
voice and the positives and negatives of the patient’s voice. The
SID model can label a sample as belonging to the caregiver, belong-
ing to the patient, or neither. As a result, we obtain the results in
Table 4 in which we report the f1 scores to measure the perfor-
mance of our SID model for both the caregiver and patient of each
dyad. The SID model achieves an f1 score in the range of 93.1%
to 97.4% for the caregivers and 91.6% to 98.3% on the patients in
the six dyads. The high performance in Table 4 indicates that our
SID algorithm is effective at picking out the voices by the care-
giver and the patient in each home in their real home environment.
Given that the SID algorithm was specifically assessed to see if
it could overcome the challenges (reverberation, deamplification,
and background noise) present in the real, designated environment
(homes), we have shown that for an algorithm to be successful in
the real, designated environment, it must be able to overcome the
challenges present in the real, designated environment during the
pre-deployment stage. The high performance of the SID during
the post-deployment time suggests that our way to perform com-
prehensive and realistic pre-deployment is effective at improving
post-deployment SID success. Note that we only validate the SID
solution on the voices of the caregiver and patient of each dyad,
because at post-deployment time, the SID solution filtered out voice
samples that belonged to neither. As a result, we only have samples
that are labelled by the SID solution as either the caregiver or the
patient. For samples that made through the SID solution, we have
the performance reported in Table 4.

In Table 5 we report the f1 score of a model [27] that we did not
use because at pre-deployment time it achieves bad performance
(an f1 score of 79.3% on P1 and an f1 score of 71.2% on P2). As
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Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
Caregiver 94.5% 97.4% 95.7% 93.1% 92.0% 89.2%
Patient 94.6% 95.9% 96.0% 94.6% 91.6% 98.3%

Table 4: The evaluation results for the speaker identification
model on the dyads. The results are the f1 scores.

Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
Caregiver 57.1% 71.4% 83.6% 52.6% 44.3% -
Patient 74.8% 75.9% 79.5% 77.7% 74.2% 97.0%

Table 5: The post-deployment evaluation results for a
speaker identification model that we did not use because
it achieved bad performance pre-deployment time. As we
can observe, its performance on all dyads is bad at post-
deployment time.

Work Dataset(s) Accuracy
Beard et al. [2] SAVEE, CREMA-D 41.2%

VGG [39] EMO-DB 43.0%
Huang et al. [24] RAVDESS, SAVEE 60.8%
Ghaleb et al. [20] RAVDESS 67.7%
Ghaleb et al. [20] CREMA-D 74.0%
SpeechBrain [36] IEMOCAP 78.7%

Table 6: State-of-the-art emotion detection algorithms on
different emotional speech datasets. This Table is adapted
from a table in the work [19]. As we can see, the best per-
forming state-of-the-art algorithm’s accuracy is capped at
80%. Since SpeechBrain achieves the highest performance,
we select it as our emotion detection model.

we can see, this model also achieves bad performance on the post-
deployment data. This indicates that at pre-deployment time, the
model that performs badly also performs badly at post-deployment
time.

5.3 The Emotion Detection Models
The emotion detection model detects the emotion of the speaker
in a given audio clip. During the pre-deployment study, we looked
into the state-of-the-art solutions for emotion detection. Table 6
shows the performance of several existing state-of-the-art solutions
using various datasets of emotional utterances. In this Section, we
aim to test the emotion detection model: is it possible to perform
comprehensive and realistic pre-deployment testing to improve
post-deployment success?

5.3.1 Pre-deployment Stage Assessment. At first glance, Table 6
suggests that 4 solutions are not viable, but that SpeechBrain [36] is
the best candidate among all the state-of-the-art algorithms, given
its high performance on the dataset IEMOCAP [7]. But is it capable
of overcoming the challenges (reverberation, deamplification, and

background noise) that are present in the real, designated envi-
ronment (a dyad’s home)? To answer that question, we need to
look into the dataset IEMOCAP [7], on which it is evaluated. If the
dataset has accounted for the challenges, i.e. during the data collec-
tion and processing process, the audio samples are touched by the
effects of the three challenges, then we conclude that the evaluation
result yielded by SpeechBrain indicates that it had overcome the
three challenges perceived to be present in the real, designated envi-
ronment that is a dyad’s home. The dataset IEMOCAP [7] indicates
that the audio clips are collected when there are furniture items
in the room, instead of an empty acoustic studio, which suggests
that the audio clips in IEMOCAP [7] are touched by the effect of
reverberation. The audio clips in IEMOCAP [7] are not collected
where a speaker is right next to the microphone. This suggests
that the audio clips in IEMOCAP [7] are touched by the effect of
deamplification. Last but not least, IEMOCAP is not collected in a
studio environment and there was no indication that the indoor
background noise events such as footsteps were deliberately re-
moved. Therefore, this suggests that the audio clips in IEMOCAP
are touched by the effect of background noise. Consequently, we
conclude that IEMOCAP’s audio samples on which SpeechBrain
is evaluated on account for the challenges that are perceived to be
present in the real, designated environment in which the emotion
detection algorithm (SpeechBrain) is to be deployed. Here, we set
the stage to prove (once again) the hypothesis that for an algorithm
to work well in the real, designated environment in which it is envi-
sioned to be deployed, during pre-deployment stage, it must show
that it is capable of handling the challenges that are perceived to
arise in the real, designated environment. In the meantime, we have
observed that algorithms such as Huang et al. [24] are not likely
to work sufficiently at post-deployment time. It is good to discover
that these solutions are not likely to work at post-deployment time,
because this helps us filter out such existing solutions.

Note that none of the state-of-the-art approaches in Table 6
include TV sounds as one of the acoustical realisms that they need
to address. In the future, we plan to develop an emotion detection
algorithm that takes TV sounds into consideration.

5.3.2 Post-deployment Stage Assessment. In the following para-
graphs we describe how we evaluate our emotion detection detec-
tion model post-deployment. Out of the audio clips we collected
from each dyad, we first select all samples that are classified by
the emotion detection model and conflict detection model as anger
speech. Then, we randomly select the same number of audio clips
from all the samples by that dyad that are not classified as anger
speech. Each of the audio clips is manually labeled based on the
emotion in the clip by the labelers. Table 7 describes our emotion
detection model’s performance on the labeled samples: For the 1st
dyad, there are 233 samples. For the 2nd dyads, there are 392 sam-
ples. For the 3rd dyads, there are 281 samples. For the 4th and 6th
dyads, there are 100 samples each. For the 5th dyads, there are 80
samples.

During the post-deployment stage assessment, researchers should
let third-party labellers label the data to obtain ground truth, instead
of letting the participants do the labelling, because the participants
are not necessarily good at discerning their own emotion (and if
they are in a verbal conflict) if they are not trained. The XYZ system
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Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
SpeechBrain 88.8% 87.2% 91.8% 92.9% 85.3% 97.4%

VGG 44.6% 65.4% 48.3 % 45.3% 53.3% 61.5%

Table 7: The post-deployment evaluation results for the
emotion detection model (SpeechBrain) as well as the VGG
model [39], whichwe did not use because at pre-deployment
time it achieves bad performance with an accuracy score of
43.0%. As we can see, it also achieves bad performance on the
post-deployment data. The measurement in this Table is f1
score.

detects if a person is in a verbal conflict or is angry. Initially, we
sought to validate our system’s performance by survey questions us-
ing EMA, similar to many other studies. However, we quickly found
out that their responses did not always agree with the decision of
the system. Who was wrong: the caregiver or our machine learning
solutions? There is existing literature [21] stating that people not
trained to recognize their emotions are often bad at recognizing
their own emotions. To investigate, we employed 5 labellers who
are approved by the IRB to listen to and label the saved clips of
the participants’ voices. Their labelling suggests that in some cases,
the labellers annotation did not agree with the participants’ self
reported emotional states. This data supports the claim that people
are often bad at recognizing their emotions. We were able to verify
the claim only because we planed, during pre-deployment time, to
save all the raw data during the full deployment time. We found
that post deployment labeling is better than EMA surveys and also
supports determination of ground truth which, in turn, provides a
better accuracy assessment of the acoustic classifiers. Determining
ground truth from deployment time data is very important and
often not done in many studies.

The emotion detection model achieves an f1 score of 85.3% to
97.4% on the six dyads. According to Table 7, the emotion detec-
tion algorithm (SpeechBrain)’s performances in all six homes are
satisfactory, highly efficient at identifying the emotions in each
clip in each of the six homes. The success of the emotion detection
algorithm demonstrated by Table 7 proves our hypothesis: for an
algorithm to be able to work satisfactorily post-deployment in a
real, designated environment, it must demonstrate that it is able
to overcome the challenges perceived to arise in that environment
during pre-deployment time. The high performance of the emotion
detection model at post-deployment time suggests that our way
to perform comprehensive and realistic pre-deployment testing is
effective at improving post-deployment success. Table 7 also in-
cludes the performance of VGG [39] which yields bad results (an
accuracy score of 43.0%) at pre-deployment time. As we can see,
the model that achieves bad performance at pre-deployment time
also achieves bad performance (an average of an f1 score of 50.1%).

5.4 The Conflict Detection Model
For conflict detection, currently, there is no available conflict detec-
tion algorithm that is acoustics-based. Therefore, we developed our
own conflict detection algorithm. In this Section, we aim to test on
the conflict detectionmodel: is it possible to perform comprehensive

Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
Ours 63.4% 65.9% 70.7% 86.2% 82.7% 90.1%

Table 8: The evaluation results for the conflict detection
model. The measurement is f1 score.

and realistic pre-deployment testing to improve post-deployment
success?

5.4.1 Pre-deployment Stage Assessment. Here we briefly describe
how the new algorithm we developed is trained and why the train-
ing process makes it specifically account for the (three) challenges
that arise in the real, designated environment in which the algo-
rithm is going to be deployed. The training and testing samples are
from 19 couples and each sample is labeled conflict if the content
of the sample indicates that the couple are in a verbal conflict. It is
labeled non-conflict if the couple are not in a verbal conflict. Since
the samples are already collected from home-environments, de-
amplification and reverberation are accounted for, but the samples
are free of background noise. As a result, we mix each of the sam-
ples with background noise by randomly selecting a segment from
a randomly chosen indoor background noise sample in Table 2 and
overlaying that segment with each sample. Out of the samples, there
are 3,072 in the training set and 1,009 in the testing set. As a result,
both the training and the testing set accounts for a variety range of
indoor environmental distortions. Since the training samples are
touched by deamplification, reverberation, and background noise,
our conflict detection algorithm trained on them is designed to be
able to handle the three challenges (deamplification, reverberation,
and background noise).

The conflict detection model’s performance on the testing set
achieves an f1 score of 93.1%. The high performance suggests that
the conflict detection is robust against environmental distortions
such as reverberation, background noise, and deamplification. This
help us set the stage to prove our hypothesis that, for an algorithm
to work sufficiently in the real, designated environment in which
challenges are perceived to be present, the algorithm must show
that, during pre-deployment stage, it is able to handle the chal-
lenges. Our conflict detection algorithm has indicated that during
pre-deployment stage, it is able to handle the three challenges: re-
verberation, deamplification, and background noise. Note that we
do not include TV sounds as one of the acoustic realisms that the
conflict detection model needs to address. In the future, we plan to
develop a conflict detection algorithm that takes TV sounds into
consideration.

5.4.2 Post-deployment Stage Assessment. In the post-deployment
time, we seek to prove our hypothesis that, for an algorithm to
work well post-deployment time in the real, designated environ-
ment in which it is going to be deployed, during pre-deployment
stage it must show that it is capable of overcoming the challenges
that are present in the real, designated environment. Our conflict
detection algorithm has showed that it is capable of overcoming the
challenges (it achieves an f1 score of 93.1% pre-deployment time).
However, is it going to work well in the post-deployment time?
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Table 8 shows our conflict detection algorithm’s performance
during the post-deployment time at the six homes. Now we explain
how we obtain the f1 score results in Table 8. If a clip is labeled by
the labelers such that it contains verbal conflict and the classifier
also thinks this clip contains verbal conflict, then it is a hit. If the
clip is labeled by the labelers as not containing verbal conflict and
the classifier also thinks that it does not contain verbal conflict,
then it is a hit. All other cases are misses (for example, the labelers
think that a sample contain verbal conflict but the classifier fails to
classify it as so). By looping through all samples produced by a dyad,
we produce an f1 score on that dyad. From Table 8, we observe that
the sixth dyad achieves the best performance with an f1 score of
90.1% while the first dyad achieves the lowest performance with
an f1 score of 63.4%. For each of the dyads, we observe a drop in
performance compared to 93.1% obtained when the same model is
evaluated on the dataset containing speech samples from the 19
couples. This indicates that despite our effort in mitigating envi-
ronmental distortions, the effects of the environmental distortions
such as room reverberation, background noise, and the deamplifi-
cation effect are not fully mitigated. But the relatively satisfactory
performance of the conflict detection model on dyads 4, 5 and 6
indicates that our way to perform comprehensive and realistic pre-
deployment testing to improve post-deployment success is effective
for exapected conditions.

We also investigate why the performance of the conflict detection
model is lower in dyads 1-3 (f1 score of 63.4% to 70.7%). Upon
communicating with the dyads, we learned that dyad 1 moved the
system (which included the microphone) to the hallway which
is very far away from the usual places that the participants were
speaking. Dyad 2 had a construction team rennovating their home,
so there was a lot of construction noise to confuse the conflict
detection model. When we developed the conflict detection model,
we did not take construction noises into consideration. In dyad
3, the caregiver’s voice was always very low, almost inaudible,
and our conflict detection model was not designed to handle such
low-to-inaudible voice samples.

5.5 Summary
In this Section we briefly summarize our findings in Section 5.

The first finding is that, to ensure post-deployment success of
an algorithm, during pre-deployment time it must be rigorously
tested on samples that are touched by the challenges that are per-
ceived to be present in the real, designated environment during post-
deployment time. This finding is confirmed by the pre-deployment
stage assessment results and post-deployment stage assessment
results of the VAD model, the SID model, the emotion detection
model, and the conflict detection model.

The second finding is that in the acoustic processing pipeline we
should always go for off-the-shelf solutions first before developing
your own algorithm. Many acoustic functions have been under
study for many years and excellent solutions exist. Yet, rigorous
testing is still required since not all of the available solutions will
work for the environment where the systemwill be deployed. In our
case, the VAD, SID, and emotion detection models are off-the-shelf.
Since there are no state-of-the-art conflict detection models that
only use (the prosody of the) voice to detect verbal conflict, this has

to be developed and will not have the luxury of having solutions
refined many many researchers over many years. This likely is
why the performance is lower than the well developed acoustic
functions.

6 ADAPTABLE ADD-ON COMPONENTS
Deploying research systems over long time periods requires sig-
nificant adaptability in many ways. Because the user is central, in
this section we concentrate on adaptability in regards to the user
interface.

6.1 EMAWording
EMA apps are common interfaces to humans. They are used to
send messages to the participants and receive responses. In our
system messages are the interventions or recommendations based
on the output of the emotion, conflict detection, and reinforcement
learning recommendation modules.

During the pre-deployment time, we collaborated with a team
of psychologists and specialists from the nursing field and deter-
mined four main categories of interventions/recommendations: the
breathing exercise, which encourages the participants to take deep
breaths to calm down, the timeout exercise, which encourages the
participants to take a timeout/break from engaging with their loved
one (the dementia patient), the mindfulness exercise, which encour-
ages them to practice mindfulness, and enjoyable activities, which
encourage them to partake activities that they enjoy. Each of these
categories contains multiple subcategories. Our implementation
allows the exact wordings of the messages to be easily change-
able in case during the deployment time the participants preferred
different wording.

Indeed, during the deployment time, we received feedback from
the some participants that certain messages seemed insensitive
and harsh, and the insensitivity and harshness of the messages
actually discouraged them from implementing the recommended
interventions. To fix this problem for these users, we went back
to the EMA app and easily changed the wording based on the
participants’ complaints. After we made the changes to the wording
for all participants, they no longer felt the wording as insensitive
and harsh, and were encouraged by the messages to implement the
interventions.

6.2 Personalized Recommendations
We have previously stated in Section 6.1 that there are four cate-
gories of interventions or recommendations. In this Section, we de-
scribe how we make the personalized recommendations adaptable
during pre-deployment time and verify if our strategy (that makes
the recommendations adaptable) succeeds during post-deployment
time.

We have also stated that during pre-deployment time we made
the EMA app to be easily adjustable in case we need to change
the interventions or recommendations. The EMA app is easily ad-
justable because it reads text questions (such as the list of enjoyable
activities for the participants) from a database and to change that
list, we just need to go to the database instead of recompiling the
app every time we make changes to the list of text surveys and
interventions. The adaptability of the EMA app and, therefore, the
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XYZ-W system came in handy when we discovered that partici-
pants want more specific recommendations, especially under the
category of enjoyable activities. In other words, instead of a generic
“now it’s time to do some enjoyable activities,” they wanted the
enjoyable activities to be more specific and personalized such as
“now it’s time to play with the family cat.” To accommodate this,
we asked each participant to provide us a list of their personalized
enjoyable activities. Because the EMA app was made to be easily
adjustable, the integration of the personalized enjoyable activities
for each participant was quick and easy.

The participants of all six dyads reported that they liked the per-
sonalization (we asked them through surveys during our interviews
with them). For smart health apps that make recommendations, we
feel that it is imperative to be able to change them to accommodate
the personal needs of the participants.

6.3 Positive Feedback
Before we deployed our XYZ-W System, we decided to only send
out at the end of the day post-recommendation surveys that asked
the participants if they had implemented the recommendations.
Then, we received requests from the participants that they would
like some positive feedback after they implemented the recommen-
dations. The positive feedback should acknowledge the effort they
put in to adhering to the recommendations and remind them of
the importance of implementing the recommendations (to improve
their mental health and lessen their care-giving burden). Again,
because the EMA app was designed at pre-deployment time to be
easily changed, integrating the feature of positive feedback into
the existing system was quick and easy. The participants of all six
dyads reported to have liked the positive feedback.

6.4 Summary
In this Section we briefly summarize our findings in Section 6. The
main takeaway message in Section 6 is that researchers need to
anticipate the need of the participants and make sure that their
technology (in our case, the add-on components to the XYZ Sys-
tem), is adaptable to those needs. For example, we initially set the
positive feedback times to be in the morning and in the evening,
but participants report that they want the positive feedback more
often. Since we have anticipated that they might have the need (to
want to see the positive feedback more often), we have designed
our add-on components in such a way that allows the change to be
easily made.

7 PRIVACY CONCERNS
Developing new research systems that will be deployed in homes
require solutions for privacy issues during recruitment and during
deployment. This is especially true when using sensing that can
be considered invasive such a microphones. Our XYZ system is
privacy-conserving, meaning that it concentrates on allowing users
to benefit from its functionalities without releasing their voice data
in its original form.

7.1 Pre-deployment Stage Preparation
During pre-deployment a set of privacy mechanisms were imple-
mented. This included that users could set the day start and end

Reason for Rejection Number(%)
Did not meet inclusion criteria 3 (4.41%)
Didn’t reply to call for screening 15 (22.06%)

Not interested 12 (17.65%)
Burdensome 10 (14.71%)

No longer wanted to participate 2 (2.94%)
Other 9 (13.23%)

Worried about privacy issue 17 (25.00%)
Total 68 (100%)

Table 9: The reasons that potential participants did not join
our study. 25% of the potential participants refused to partic-
ipate in our study because they were worried about privacy
since our system would be listening to their conversation.

times when the system is operational, turn off the system at any
point, e.g., when a visitor was there, all voice from non-registered
speakers would not be recorded, and that the content of speech
would not be recorded, i.e., only prosidy features would be recorded.

During recruitment, the above privacy mechanisms were fully
described to potential dyads. Also, using a graph and tables we
showed them what prosidy means. Nevertheless, one in four care-
giving dyads who rejected participation in the study worried about
the privacy issue despite the thorough explanation of the study
procedures. Basically, once we explained that our system listens
to them for anger/conflict events, it caused some of the prospec-
tive dyads to think about privacy invasion and they declined to
participate in the study.

Overall, Table 9 describes the reasons that potential participants
did not choose to participate in our study: 3 potential participants
did not meet the criteria to be included in our study. 15 potential
participants lost interest in participating and did not reply to our
call for screening that they must pass in order to be included in
our study. 12 potential participants decided upfront with us during
our communication with them that they were not interested. 10
potential participants found the study to likely be burdensome. 2
potential participants in our follow-up calls with them indicated
that they are no longer interested in the study. 9 potential partici-
pants were no longer interested to participate due to various issues
such as the patient passing away. 17 potential participants refused
to participate out of the concern for privacy issues. Privacy is the
main reason for 25% of those interviewed (the largest percentage
among all categories of the reasons to not participate). It can be ex-
pected that when deploying sensing systems in homes some people
will reject the system. With enough privacy mechanisms we were
able to limit those not willing to participate due to privacy to 25%.

7.2 Post-deployment Stage Assessment
Using a survey after the 4 month study, five out of six of the re-
cruited dyads agreed that their privacy concerns are addressed and
they have had no issue regarding privacy. However, one dyad still
has some concerns over their privacy. In this home, the Alzheimers’
patient (not the caregiver) pulled out the wires that connect our
equipment to the power source, for he feared that during the time
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the system is set to not monitor them, the system is still actively
listening. We countered this distrust our system by showing these
participants the data we collected: namely, we showed them the
timestamps of the voice samples that we collected so they knew that
outside of the active hours of the system that we were true to our
word and the system did not listen to them. We also showed them
amplitude plots of the data we collected where there are no words.
We also showed them that there did not exist files which recorded
the transcriptions of their conversation, since some concerns had
been raised such that the participants were worried about being
transcribed.

7.3 Summary
Privacy concerns are likely to arise when researchers deploy their
technology in the home environments. During the pre-deployment
stage, researchers must implement privacy mechanisms even if they
are not the core purpose of the system. These mechanisms must
be explained to participants. We believe that the mechanisms we
describe can be used in many systems that utilize speech of the par-
ticipants. Finally, the responses from the dyads at post-deployment
time provide some evidence that privacy can be addressed to users’
satisfaction.

8 CONCLUSION
As research projects (not pilot studies), smart health groups often
design novel smart technologies to be deployed in people’s homes.
However, the integration of novel smart technology from the less
complex lab environments to the more complex real environments
poses many challenges. In this paper, using the XYZ system as a
case study, we present and evaluate various techniques for acous-
tic pipelines, adaptability of the user interface, and privacy that
increase deployment time success.
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