
ArchGym: An Open-Source Gymnasium for Machine Learning
Assisted Architecture Design

Srivatsan Krishnan
srivatsan@seas.harvard.edu

Harvard University
Cambridge, Massachusetts, USA

Shvetank Prakash
sprakash@g.harvard.edu

Harvard University
Cambridge, Massachusetts, USA

Jason Jabbour
jasonjabbour@g.harvard.edu

Harvard University
Cambridge, Massachusetts, USA

Susobhan Ghosh
susobhan_ghosh@g.harvard.edu

Harvard University
Cambridge, Massachusetts, USA

Behzad Boroujerdian
behzadboro@utexas.edu

UT Austin/Harvard University
Cambridge, Massachusetts, USA

Amir Yazdanbakhsh
ayazdan@google.com

Google Research, Brain Team
Mountain View, California, USA

Ikechukwu Uchendu
iuchendu@g.harvard.edu

Harvard University
Cambridge, Massachusetts, USA

Daniel Richins
drichins@utexas.edu

UT Austin
Austin, Texas, USA

Devashree Tripathy
devashreetripathy@iitbbs.ac.in

IIT Bhubaneswar/Harvard University
Bhubaneswar, Odisha, India

Aleksandra Faust
faust@google.com

Google Research, Brain Team
Mountain View, California, USA

Vijay Janapa Reddi
vj@eecs.harvard.edu
Harvard University

Cambridge, Massachusetts, USA

ABSTRACT

Machine learning (ML) has become a prevalent approach to tame
the complexity of design space exploration for domain-specific ar-
chitectures. While appealing, using ML for design space exploration
poses several challenges. First, it is not straightforward to identify
the most suitable algorithm from an ever-increasing pool of ML
methods. Second, assessing the trade-offs between performance
and sample efficiency across these methods is inconclusive. Finally,
the lack of a holistic framework for fair, reproducible, and objective
comparison across these methods hinders the progress of adopt-
ing ML-aided architecture design space exploration and impedes
creating repeatable artifacts. To mitigate these challenges, we in-
troduce ArchGym, an open-source gymnasium and easy-to-extend
framework that connects a diverse range of search algorithms to
architecture simulators. To demonstrate its utility, we evaluate
ArchGym across multiple vanilla and domain-specific search algo-
rithms in the design of a custom memory controller, deep neural
network accelerators, and a custom SoC for AR/VR workloads,
collectively encompassing over 21K experiments. The results sug-
gest that with an unlimited number of samples, ML algorithms
are equally favorable to meet the user-defined target specification
if its hyperparameters are tuned thoroughly; no one solution is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589049

necessarily better than another (e.g., reinforcement learning vs.
Bayesian methods). We coin the term “hyperparameter lottery” to
describe the relatively probable chance for a search algorithm to
find an optimal design provided meticulously selected hyperparam-
eters. Additionally, the ease of data collection and aggregation in
ArchGym facilitates research inML-aided architecture design space
exploration. As a case study, we show this advantage by developing
a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold re-
duction in simulation time. Code and data for ArchGym is available
at https://bit.ly/ArchGym.

CCS CONCEPTS

• Computer systems organization → Architectures; • Com-

puting methodologies→ Reinforcement learning;Machine

learning algorithms; Bio-inspired approaches.

KEYWORDS

Machine learning, Machine Learning for Computer Architecture,
Machine Learning for System, Reinforcement Learning, Bayesian
Optimization, Open Source, Baselines, Reproducibility

ACM Reference Format:

Srivatsan Krishnan, Amir Yazdanbakhsh, Shvetank Prakash, Jason
Jabbour, Ikechukwu Uchendu, Susobhan Ghosh, Behzad Boroujerdian,
Daniel Richins, Devashree Tripathy, Aleksandra Faust, and Vijay Janapa
Reddi. 2023. Arch-Gym: An Open-Source Gymnasium for Machine
Learning Assisted Archi-tecture Design. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA ’23), June 17–21,
2023, Orlando, FL, USA. ACM, New York, NY, USA, 16 pages. https://
doi.org/10.1145/3579371.3589049

https://doi.org/10.1145/3579371.3589049
https://bit.ly/ArchGym
https://doi.org/10.1145/3579371.3589049
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589049&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

1 INTRODUCTION

Hardware customization [18, 20, 29, 46, 47, 68, 89, 99, 103] has
played a pivotal role in realizing the potential of machine learn-
ing in various applications [4, 17, 23, 48, 56, 70, 102]. The stag-
nation of Moore’s law and the increasing demand for compute
efficiency [12, 19, 83, 90] have propelled the field towards pur-
suing extreme domain-specific customization. While intriguing,
this direction poses several challenges. The immense number of
design parameters across the compute stack leads to a combinato-
rial explosion of the search space [37, 89, 108]. Within this space,
numerous infeasible design points further complicate optimiza-
tion [37, 57]. Additionally, the diversity of the application landscape
and the unique characteristics of the search space across the com-
pute stack challenge the performance of conventional optimization
methods. To address these challenges, both industry [70, 85, 98] and
academia [37, 41, 51, 52, 86, 89, 97] have turned towards ML-driven
optimization to meet stringent domain-specific requirements. Al-
though prior work has demonstrated the benefits of ML in design
optimization, the lack of reproducible baselines hinders fair and
objective comparison across different methods.

First, selecting the most suitable algorithms and gauging the role
of hyperparameters and their efficacy is still inconclusive. There are a
wide range of ML/heuristic methods, from random walker [106] to
reinforcement learning (RL) [96], that can be employed for design
space exploration (DSE). For example, recent work has applied
Bayesian [84, 92], data-driven offline [89], and RL [51] optimization
methods for architecture parameter exploration of Deep Neural
Network (DNN) accelerators. While these methods have shown
noticeable performance improvement over their choice of baselines,
it is not evident whether the improvements are because of the
choice of optimization algorithms or hyperparameters. To ensure
reproducibility and facilitate widespread adoption of ML-aided
architecture design space exploration, it is imperative to outline a
systematic benchmarking methodology.

Second, while simulators have been the backbone of architec-
tural innovations, there is an emerging need to address the trade-offs
between accuracy, speed, and cost in architecture exploration. The
accuracy and performance estimation speed widely varies from one
simulator to another, depending on the underlying modeling details
(e.g. cycle-accurate [15, 65]→ transaction-level simulator [67, 95]
→ analytical model [6, 10, 58, 78, 104] → ML-based proxy mod-
els [36, 54, 69, 97]). While analytical or ML-based proxy models
are nimble by virtue of discarding low-level details, they generally
suffer from high prediction error. Also, due to commercial licens-
ing, there can be a strict limits on the number of samples collected
from a simulator [33]. Overall, these constraints exhibit distinct
performance vs. sample efficiency trade-offs, affecting the choice
of optimization algorithm for architecture exploration. Therefore,
it is challenging to delineate how to systematically compare the
effectiveness of various ML algorithms under these constraints.

Lastly, rendering the outcome of DSEs into meaningful artifacts
such as datasets is critical for drawing insights about the design
space. It is commonly known that the landscape of ML algorithms is
rapidly evolving and some ML algorithms [59] need data to be use-
ful. Solely in the RL domain, we have witnessed the emergence of
several algorithmic formulations (e.g. PPO [88], SAC [34], DQN [71],

ArchitectureFoo
(DRAMGym, TimeLoopGym,

FARSIGym, etc.)

ArchGym Environment

Workloads
(Memory Traces,

DNNs, AR/VR, etc.)

Action
(Simulator

Parameters)

Observation
(Simulator

State)

Reward
(Performance

Metrics)

Ar
ch

G
ym

 In
te

rfa
ce

ArchGym Agent

HyperParameters
(Learning Rate, Initial

Population, etc.) ArchGym
Dataset

Agent Policy

Reinforcement
Learning

Genetic
Algorithm

Bayesian
Optimization

Figure 1: ArchGym comprises two main components: the

‘ArchitectureFoo’ environment and the ‘Agent’. Architecture-

Foo encapsulates the cost model, which can be a simulator

(e.g., DRAMSys [95]), a roofline model (e.g., FARSI [10]), an

analytical model (e.g., MASTERO [58]), or even real hard-

ware. Similarly, the second component, Agent, is an abstrac-

tion of a policy and hyperparameters (see Section 4). With a

standardized interface that connects these two components,

ArchGym provides a unified framework for evaluating differ-

ent machine learning-based search algorithms fairly while

also saving the exploration data as the ArchGym Dataset. By

using ArchGym, researchers and practitioners can compare

and evaluate the performance of different algorithms in a

consistent and systematic manner.

DDPG [62]) solving a variety of problems. In parallel, recent efforts
have employed offline RL [59] methods to amortize the cost of data
collection. In this rapidly evolving ecosystem, it is consequential to
ensure how to amortize the overhead of search algorithms for architec-
ture exploration. It is not apparent, nor systematically studied how
to leverage exploration data while being agnostic to the underlying
search algorithm.

To alleviate these challenges, we introduceArchGym (See Fig. 1),
an open-source gymnasium to analyze and evaluate various ML-
driven methods for design optimization. ArchGym reinforces using
the same interface between search algorithms and performance
models (e.g. architecture simulator or proxy cost models), enabling
effective mapping of variety of search algorithms. This interface
also forms the scaffold to develop baselines for comparison and
benchmarking of search algorithms, as they continue to evolve and
grow. Furthermore, ArchGym provides an infrastructure to collect
and share datasets in a reproducible and accessible manner, which
organically advances the understanding of the underlying design
spaces and improves the status quo search algorithms.

We perform more than 21,600 experiments corresponding to
around 1.5 billion simulations across four architectural design space
exploration problems, (1) DRAM memory controller, (2) DNN ac-
celerator, (3) SoC design, and (4) DNN mapping. We use five com-
monly used search algorithms and comprehensively sweep their
associated hyperparameters. Our evaluation shows that there are
significant variations in the final performance of these algorithms.
For instance, we observe a statistical spread in the performance of
different search algorithms of up to 90%, 20%, and 40% for DRAM

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 1: Prior works using ML for optimizing architectural

components.

Prior Work ML-Method Architecture Component

DRL-NOCS [64] Reinforcement Learning Network-on-Chips
GAMMA [52] Genetic Algorithm ML Accelerator Mapping
PRIME [57] Data-Driven Offline Learning ML Accelerator Datapath

Reagen. et. al. [84] Bayesian Optimization NN HW-SW Co-Design
FAST [108] Linear Combinatorial Swarms NN HW-SW Co-Design

Ipek. et. al. [43] Reinforcement Learning DRAM Memory Controller
Zhang. et. al. [109] Ant Colony Optimization Circuit Parameters
Compiler Gym [21] Reinforcement Learning Compiler Optimization

ArchGym (This Work) ML * (BO, GA, RL, ACO ...) Architecture* (DRAM, SoC, Mapping etc)

memory controller, DNNAccelerator, and SoC design, respectively.1
Including outliers, each algorithm yields at least one configuration
that achieves the best objective across different design spaces.

These observed variations is the results are primarily a conse-
quence of hyperparameter selection, as yet an open research prob-
lem [107]. The choice of optimal hyperparameter values depends
on the characteristics of the ML algorithm as well as the under-
lying domain. However, commonly used hyperparameter tuning
techniques [8, 28, 74] introduce another layer of complexity. That
is, identifying the optimal hyperparameters for architecture DSE
remains non-trivial, an improbable task akin to winning a lottery,
requiring significant amount of resources. This “hyperparameter
lottery” describes the comparable chance of an algorithm to attain
an optimal solution.2 Finally, in contrast to common wisdom, our
analyses suggest that the evaluated search methods are equally fa-
vorable across different design space exploration problems. Below
we summarize the main contributions of our work:
• We design and open source the ArchGym framework for ML-
aided architecture design space exploration, enabling systematic
evaluation and objective comparison of search algorithms.

• Leveraging this framework, we show that, contrary to common
wisdom, the evaluated search algorithms are all equally favorable
for architecture design space exploration, no one algorithm (e.g.
RL or Bayesian methods or GA) is necessarily more promising.

• We argue that to fairly compare ML algorithms, it is crucial
to take into account the cost of hyperparameter optimization,
such as access to hardware simulator samples. Without proper
evaluation metrics, the effectiveness of search algorithms can be
misleading to realize the potential of ML-aided design.

• We release a set of curated datasets that are useful for build-
ing high-fidelity proxy cost models. Such proxy cost models are
often orders of magnitude faster compared to conventional cycle-
accurate simulators, mitigating the trade-off between speed and
accuracy in architecture exploration.

• Building off the intuition that increasing dataset size improves
accuracy, we show that adding diversity, enabled by ArchGym,
can reduce the average root mean square error by up to 42×.

2 BACKGROUND AND RELATEDWORK

Though ML can be used for many classes of optimization prob-
lems, in this paper, we center our study to architecture design space
exploration problems. Architecture DSE corresponds to a class of
problems that uses search algorithms to navigate the architecture
1We measure the statistical spread by reporting the interquartile range.
2We refer to a design as optimal as long as it meets all user-defined criteria for a target
hardware, for example latency < 𝐿.

Neural
Network

Reinforcement Learning
(RL)

{Cache_size, …, PEs}

Genetic Algorithm
(GA)

Genome
Encoding

{Cache_size, …, PEs} {Cache_size, …, PEs}

Bayesian Optimization
(BO)

Surrogate
Model

Ant Colony Optimization
(ACO)

Probabilistic
Model

{Cache_size, …, PEs}

<latexit sha1_base64="mNBEnLXTXJ+ZiFVlUH8+mYS/NNY=">AAACfHicZVHLbtQwFHXCaxgeTcuSjaFUGoQYJQi1bJAqkBDLIjFtpck0unGcGWscJ7JvKFPjP+Eb2LHkQ9iy4ycQnodQS65k+eice67lc/NGCoNx/DMIr12/cfNW73b/zt1797ei7Z1jU7ea8RGrZa1PczBcCsVHKFDy00ZzqHLJT/L526V+8olrI2r1ERcNn1QwVaIUDNBTWfSlObNzl9nPC0df07TUwOwgRWjPbAqymcFaezpIOYLncn9tKGdT01aZvUiFsiBlfc4LrzjnOgMuugM85bJoNx7Gq6JdkGzA7uG77z++fnsUHWXR77SoWVtxhUyCMeMkbnBiQaNgkrt+2hreAJvDlI89VFBxM7GrlBzd80xBy1r7o5Cu2P7eJYuFyphFlfvWCnBmOuKS/Sde1vK8EGrqrhjGLZavJlaopkWu2Pr9spUUa7rcBC2E5gzlwgNgWvgvUDYDvwD0++r7bJL/k+iC4xfDZH/48oMP6Q1ZV488JI/JgCTkgByS9+SIjAgjv4JesB3sBH/CJ+Gz8Pm6NQw2ngfkSoX7fwHOw8kE</latexit>

pk
xy =

(⌧↵xy)(⌘�xy)
P

z2allowedx
(⌧↵xz)(⌘

�
xz)

Figure 2: Agent and its policy are used to determine optimal

parameter selection. For example, in an RL agent, the policy

is typically a neural network. In Genetic algorithms (GA), the

policy is a genome. In BO, the policy is a surrogate model; in

ACO, the policy is a probabilistic model. The policies in each

of these agents determine the parameter selection. For ex-

ample, in micro-architectural resource allocation problems,

parameters can be any micro-architectural parameters such

as cache size or PE counts.

parameter design space. This generally forms a prohibitively large
search space, and as a result an intractable problem for manual
search. Hence, architects commonly employ heuristics or ML-aided
search algorithms to navigate the space in the pursue of efficient
designs. One of the commonmetrics to asses the efficiency of search
algorithms is the number of requisite samples before reaching an
optimal solution. The search algorithm iteratively suggests param-
eter values for a given workload (or set of workloads). The fitness
(i.e., how good a particular parameter selection is) of these selections
is determined by a cost model. For architecture DSE, this cost model
can be a time- and resource-consuming cycle-accurate simulators
or a relatively fast inaccurate analytical models.

While an exhaustive search may be feasible when number of
parameters is modest, such approach is not practical even in auto-
mated DSE frameworks [22, 40, 94]. A growing body of work has
used analytical models [53, 75], sampling techniques [91, 105], and
statistical simulation [25, 76, 82] to navigate large search spaces.
However, the continued increase in configurable architecture pa-
rameters [89, 108] is expanding the design space [50], straining
conventional search methods.

To mitigate this, ML algorithms have been widely employed in
searching architectural parameters with inspiring results as some
are highlighted Table 1. Bayesian optimization (BO) [9, 84, 110] is a
popular technique for tuning architectural parameters. However,
since the time complexity of BO is cubic to the number of sam-
ples [66, 101], it is yet to be seen if BO can successfully converge
on extremely large design spaces [51, 57, 108]. Alternatively, single
agent RL is used for data path and mapping optimization for DNN
accelerators [51], identifying quantization levels [26], and commer-
cial chip floor planning [70]. However, it is commonly-known that
RL algorithms are sample inefficient [13, 44] and susceptible to
variations in hyperparameter initialization [45]. It is evident that
both the machine learning and hardware communities could bene-
fit from developing stronger introspection skills in order to create
more resilient and dependable RL optimization algorithms.

3 DESIGN AND IMPLEMENTATION

Our primary objectives in ArchGym is to apply ML approaches
for architecture design space exploration, fairly compare their per-
formance, and provide an infrastructure for collecting exploration

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

Table 2: The similarity between various ML-based search algorithms. ArchGym uses these similarities to integrate the different

algorithms into a standard, unified interface.

Qn Search Algorithms

Requirements

Reinforcement

Learning

Bayesian

Optimization

Ant-Colony

Optimization

Genetic

Algorithms

Q1

Policy will determine
the actions

Surrogate model
will determine the

actions

Pheromones will determine
the actions

Genome will determine
the actions

Reward/Fitness
is needed

Q2

Reward is used
as feedback

Fitness is used as
feedback

Fitness value will determine
pheromone concentration

Fitness value will determine
which candidates need to reproduce

State of the simulator/observation is
needed to understand how good/bad it is.

Q3 Hyperparameters in RL algorithm Acquisition
Function

Stochastic model will determine
when to explore vs exploit Mutation/Cross-over operation Intrinsic to Agent

datasets. Additionally, we aim to understand the relevant trade-offs
associated with different ML algorithms.

ArchGym consists of three main components, namely Gym Envi-
ronment, Agents, and Interface Signals. Figure 1 outlines a high-level
view of these components inArchGym. Our proposed search frame-
work is designed to bemodular and flexible to exchange the architec-
tural problem under study as well as ML agents in a straightforward
manner. To achieve this, we wrap each architectural component
into an ArchGym environment. The architectural cost model can
be a cycle-accurate simulator, analytical model, an ML-based cost
model, or alternatively silicon hardware. There are bi-directional
interface signals from the ArchGym environment to the agents.
Each agent, irrespective of its type (e.g., Bayesian optimization,
reinforcement learning, ant colony optimization), uses the exact
same interface signals to interact with ArchGym environments.

3.1 Environment

Each environment is an encapsulation of the architecture cost model
alongwith the target workload(s). The architecture costmodel deter-
mines the cost of running the workload, given a set of architecture
parameters. For example, the cost can be latency, throughput, area,
energy, or any other combinations of user-defined performance
metrics. Fig. 1 outlines various components in the environment. We
expound each part in the following.
Architecture cost model. Depending upon the architecture un-
der study, ‘ArchitectureFoo’ (see Fig. 1) can be replaced with rep-
resentative architecture cost model. This is a placeholder for an
architecture cost model in which a user intends to apply ML meth-
ods for design space exploration. For instance, if the user wants
to use ML for architecture design space exploration of a memory
controller, the ArchitectureFoo would be replaced by DRAMGym,
which encapsulates the DRAM architecture cost model. Similarly, if
the user wants to employ ML for design space exploration of DNN
accelerators, ArchitectureFoo would be replaced by TimeloopGym
which encapsulates Timeloop [78]. Finally, for a complex SoC for
AR/VR workloads, we can encapsulate FARSI [10] as a FARSIGym
to provide the SoC cost model.
Target Workload(s).Workloads are the integral components in
ArchGym. Each workload representation can be diverse and vary
significantly depending upon the component the user intends to op-
timize. For instance, in the case of optimizing memory controllers,
the workload could be memory access traces of a particular appli-
cation. Likewise, for DNNs, the workload can be represented as
a graph or information about various layers. Similarly, an AR/VR

workload can be represented as a task graph where each task can
be mapped to different IPs in an SoC.

3.2 Agent

We define ‘Agent’ as an encapsulation of the machine learning
algorithm used for search. An ML algorithm consists of ‘hyperpa-
rameters’ and a guiding ‘policy’. The hyperparameter is intrinsic to
an algorithm which can significantly influences its performance. A
policy, on the other hand, determines how the agent selects a param-
eter iteratively to optimize its target objective. To further reinforce
this abstraction, we seed our infrastructure with five agents from
recently developed search algorithms, namely, Ant-Colony Opti-
mization [31], Bayesian Optimization [72], Genetic Algorithms [16],
Random Walker agent [106], and Reinforcement Learning [96] to
solve the same set of architectural design space exploration prob-
lems. Figure 2 demonstrates the four agents that we develop and
integrate in ArchGym. The random walker algorithm [106], which
is not shown in this figure, is merely a random search with a random
number generator as its policy.

As shown in Table 1, these algorithms are commonly used in
hardware design at different abstraction levels. For example, BO has
been used in efficient accelerator design space exploration [84] and
in selecting the best coherency interfaces for hardware accelerators
on SoCs [9]. RL has been used for DNN architecture design [51], chip
floor planning [70], and exploring router-less NoC designs [63]. GA
has been used in design space exploration of heterogeneous multi-
processor embedded systems [73] and behavioral IPs [87]. ACO
has been applied to solving long-standing compiler optimization
problems [93] and has been used in high-level synthesis design
space exploration [30].

3.3 Interface

AnAgent’s role in architecture design space exploration is to output
a set of parameter selections according to its policy. This parameter
selection acts as an input signal to theArchGym environment. Like-
wise, the ArchGym’s environment outputs the state information of
the architecture cost model and a feedback signal back to the agent.
We need interface signals to facilitate these communications be-
tween the agent and the ArchGym. Three main signals are needed:
action, observation, reward (Fig. 1). They all use these signals
to optimize their target objective regardless of the agent type.

ArchGym uses the OpenAI gym interface to expose the param-
eters to all machine learning algorithms. The action is used as

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 3: Summary of the Gym environments in experimental setup. Objective is to optimize reward via optimal actions.

Gym

Environment

Simulator Workload Action Observation Reward

DRAMGym DRAMSys [95]
Memory Trace

(i.e., Streaming Access Pattern, Random Access Pattern)
Memory Controller Parameters

(i.e, RefreshPolicy, RequestBufferSize, etc.) <latency, power, energy> 𝑟𝑥 =
𝑋target

|𝑋target−𝑋obs |

TimeloopGym Timeloop [78]
Convolutional Neural Network

(i.e., AlexNet, MobileNet, ResNet-50)
Accelerator Parameters

(i.e., NumPEs, WeightsSPad_BlockSize, etc.) <latency, energy, area> 𝑟𝑥 =
𝑋target

|𝑋target−𝑋obs |

FARSIGym FARSI [10]
AR/VR Audio & Image Processing Task Dependency Graph

(i.e., Audio Decoder, Edge Detection)
System On-Chip Parameters

(i.e., PE_Type, NoC_BusWidth, etc.) <power, performance, area>

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑏𝑢𝑑𝑔𝑒𝑡 =
∑
𝑚 𝛼 ∗ (𝐷𝑚−𝐵𝑚)

𝐵𝑚

𝑚 ∈ {𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒, 𝑃𝑜𝑤𝑒𝑟,𝐴𝑟𝑒𝑎}

MaestroGym Maestro [58]
DNN Workloads

(i.e., ResNet18, MobileNet, etc.)
DNN Mapping

(i.e., L1 and L2 mapping, etc.) <runtime, throughput, energy, area> 𝑟𝑥 = 1
𝑋target

the interface to relay the agents actions to the environment. Like-
wise, the observation is used as the interface to relay the state
information of the environment back the agent. Additionally, the
reward is the feedback signal for the agent’s architecture parameter
selection. In the case of RL, this signal is called the reward signal.
Likewise, this reward signal is called fitness in other agents, such as
Bayesian optimization, ACO, and GA. The agent uses this reward
to fine-tune its policy to make better parameter selections in the
future to optimize its target objective.

Since all agents interact with ArchGym environment through
the same interface, we can additionally record each interaction.
We call these interactions trajectories. These trajectory recordings
can be used to construct standardized datasets for training sample
inefficient algorithms, offline algorithms [57], or constructing cost
models for architectural simulators (See Section 6).

3.4 Dataset Generation

One of the unique features of ArchGym is that it can be used to col-
lect standardized datasets across all agents for the same architecture
design space exploration task. Using a standardized interface (Sec-
tion 3.3), ArchGym can log the information exchanges between all
agents and the environment into popular dataset exchange formats
like TFDS [77], RLDS [81]. Over time, accruing these datasets for
similar architecture design space explorations enables new variants
of data-driven offline learning algorithms [89]. Furthermore, as we
demonstrate in Section 7, the diversity in these datasets (from differ-
ent agents) can create high-fidelity proxy cost models to replace the
slow architectural cost models (e.g., cycle-accurate simulators). We
strongly believe a community-wide adoption of ArchGym method-
ology can create useful datasets for tackling fundamental problems
surrounding data scarcity from the architecture cost model and can
significantly speed up architecture design space exploration.

4 INTEGRATION OF NEW ALGORITHMS

In this section, we provide an intuitive explanation of the design
and implementation of ArchGym for ML-aided design space explo-
ration. This approach allows us to better understand the similarities
between different ML search algorithms and serves as a foundation
for adding novel ML-based search algorithms to ArchGym.

The goal of any intelligent agent is to determine the optimal
parameter selection tomaximize (orminimize) the objective. During
the agents’ training process (optimization phase), it has to fine-
tune its policy. To achieve these goals, each agent answers the
following questions: (Q1): How does an agent determine a particular
parameter (action)? ; (Q2)How does an agent use feedback for selecting
a particular parameter and fine-tune the policy? ; (Q3) How does the

agent balance between exploration and exploitation? We tabulate the
answer to these questions for the four agents shown in Table 2.

Given that each agent approaches the same questions differently,
we distill the information exchanged by all these agents to answer
Q1,Q2, andQ3 to standardize the interface. Such standardization of
interfaces provides baselines to objectively compare all the agents
in a fair and reproducible manner.
(Q1) How does each agent select a parameter? In the Q1 sce-
nario, each agent has a policy that allows it to take intelligent
parameter selection. As shown in Fig. 2, RL uses the neural network
policy to determine the action. In BO, the agent’s surrogate model
determines the actions. Likewise, in ACO, the agent has a simple
probabilistic model as a function of pheromone concentration, guid-
ing the ant agent to take a particular action. Lastly, in the case of
GA, the genome of each population determines the actions. Hence,
from an information exchange point of view, each agent outputs
actions (parameters) while the policy being intrinsic to the agent.
Moreover, since each search algorithm is iterative, the agent needs
to output actions at each step/iteration.
(Q2) How does the agent receive feedback after selecting

a parameter? Once the agent selects a parameter, it is relayed
to the environment. The environment performs the simulation
and outputs a feedback signal that the agent uses to fine-tune its
policy. In RL, the reward signal is a function of the optimization
objective (e.g., minimizing latency, area, etc.). In BO, ACO, and
GA, it receives fitness metrics to evaluate the selected parameter
set and fine-tune the policy accordingly. For instance, in an ACO
agent, the pheromone concentration is modulated by this fitness.
Similarly, in BO, the surrogate model is refined. Likewise, GA uses
it to determine the fittest agent for natural selection, which will
result in a new genome. Hence, from an information exchange
point of view, each agent receives a reward/fitness metric, which is
consequently used to fine-tune the policy and take more intelligent
parameter selection.
(Q3) How does the agent balance between exploration and

exploitation? In a large parameter design space, an intelligent
agent should ensure that it shouldn’t get stuck at local maxima or
minima. To learn this, it needs to explore other regions smartly,
even though there is a higher chance that it would be sub-optimal.
The efficacy of each agent in determining the optimal parameter
set depends upon how the agent balances exploration and exploita-
tion. For this purpose, each agent has a set of hyperparameters that
influences how an agent performs exploration and exploitation. For
example, in GA, there are two, namely probability of mutation and
crossover, which allow the GA agent to explore. Similarly, ACO has
a probabilistic model which switches between selecting random

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

Parameter Value
NumPEs (14, 336, 14)

PEArray_XDim 2, 7, 14

IFMSPad_MemoryDepth (1024, 65536, 2x)

IFMSPad_BlockSize (1, 4, 2x)

IFMSPad_Class regfile, smartbuffer_SRAM,
smartbuffer_RF, SRAM

WeightsSPad_MemoryDepth (1024, 65536, 2x)

WeightsSPad_BlockSize (1, 4, 2x)

WeightsSPad_Class regfile, smartbuffer_SRAM,
smartbuffer_RF, SRAM

PSum_MemoryDepth (1024, 65536, 2x)

PSum_BlockSize (1, 4, 2x)

PSum_Class regfile, smartbuffer_SRAM,
smartbuffer_RF, SRAM

SharedGlobalBuffer_MemoryDept
h

(1024, 65536, 2x)

SharedGlobalBuffer_BlockSize (1, 4, 2x)

SharedGlobalBuffer_NumBanks (16, 128, 2x)

SharedGlobalBuffer_Class regfile, smartbuffer_SRAM,
smartbuffer_RF, SRAM

Parameter Value
RefreshMaxPostponed (1, 8, 1)

RefreshMaxPulledIn (1, 8, 1)

RequestBufferSize (1, 8, 1)

MaxActiveTransactions (1, 128, 2x)

PagePolicy Open, OpenAdaptive,
Closed, ClosedAdaptive

Scheduler Fifo, FrFcfsGrp, FrFcfs

SchedulerBuffer Bankwise, ReadWrite,
Shared

Arbiter Simple, Fifo, Reorder

RespQueue Fifo, Reorder

RefreshPolicy NoRefresh, AllBank

Parameter Value

PE_Type GeneralPurposeProcessor,
Accelerator

PE_Freq (100, 800, 200)

PE_Count (0, 3, 1)

PE_Unrolling_Type (0, 3, 1)

PE_Unrolling_Arithmetic (1, 2*17, 2)

PE_Unrolling_Geometric (1, 217, 2x)

NoC_Freq (100, 800, 200)

NoC_Count (0, 3, 1)

NoC_BusWidth (4, 256, 4)

Mem_Type DRAM, SRAM

Mem_Freq (100, 800, 200)

Mem_Count (0, 3, 1)

Mem_BusWidth (4, 256, 4)

(a) DRAM Memory Controller (b) Eyeriss-Like Accelerator (c) System On-Chip Architecture

Parameter Value

Filter_X [1:S:1]

Filter_Y [1:R:1]

Input_X [1:X:1]

Input_Y [1:Y:1]

Input Channels [1:C:1]

Number of Filters [1:K:1]

Loop Order <S,R,X,Y,C,K>

Num_Pe 1:1024:2

(d) DNN Mapping

Figure 3: Architecture DSE problem from (a) component-level , (b) accelerator level, and (c) SoC level, and (d) Mapping. A

mixture of numerical and categorical parameters are learned. Numerical parameters are specified in tuple format: (min, max,

step). The total search space for DRAMGym, TimeloopGym, FARSIGym, and MASTEROGym are 1.9e7, 2e14, and 1.6e17, 1e24

(for VGG16 second layer) respectively.

actions or choosing a parameter set that has a higher pheromone
concentration. When the ACO agent chooses a random action, it
facilitates exploration. Likewise, in BO, there is an acquisition func-
tion [72] that facilitates exploration. Lastly, in RL, many methods,
such as adding noise to NN policy and regularization, etc., are em-
ployed to facilitate exploration in reinforcement learning. Hence,
in summary, how agent balances exploration and exploitation is
often an integral part of the agent. Therefore, each agent should
expose its hyperparameters during the agent’s initialization.

We adopt the OpenAI gym [5] interface to integrate all the nec-
essary information exchange to and from the agents. While OpenAI
gym is limited to RL, Arch-Gym supports many other agents thanks
to our observations that all agents can be systematically be bro-
ken down into Q1, Q2 and Q3. For example, in Q1, each agent
uses the policy to determine a set of parameters. Furthermore,
the gym environment provides a step() interface through which
the agent’s action (parameter) can be encapsulated. In the case of
Q2, the step() also returns a feedback signal (e.g., reward/fitness)
which the agents can use to fine-tune its policy. Lastly, in the case of
Q3, each agent’s hyperparameters are innate to the agent’s initial-
ization. Moreover, in certain RL algorithms (e.g., DDPG [62]), noise
is added to the parameters (i.e., action) to allow further exploration.
These noise-induced parameters can be passed through the step().

5 EXPERIMENTAL SETUP

In this section we describe the simulator, workload, and agent imple-
mentations. Table 3 summarizes the key aspects of each simulator,
such as workloads, actions, observation, and rewards. In Figure 3,
we provide the parameter set for each ArchGym environment and
elaborate on our experimental setup. Briefly, we use four environ-
ments to demonstrate the utility of ArchGym and their details
(architecture, parameters, workloads).
Simulators. We developed gym environments for four simula-
tors to demonstrate ArchGym’s generalizability: DRAMGym uses

DRAMSys [49], TimeloopGym uses Timeloop [78] for DNN accel-
erators, FARSIGym uses FARSI [10] for complex SoCs, and Maestr-
oGym uses Maestro [58] for DNN mapping as the simulator.
Workloads. For exploring DRAM memory controller designs, we
use the memory traces provided within DRAMSys [95]. Likewise,
for evaluating several candidate SoC designs, we use AR/VR work-
loads that come prepackaged with the FARSI simulator [10]. We use
Pytorch2Timeloop [78] to convert the CNN models to a format that
Timeloop accepts. Likewise, we use different CNN models available
in Maestro to evaluate the optimal mapping.
Agents. For each agent, we took existing open-source implementa-
tions and modified the interfaces for our architectural design space
problem. For ACO, we adopted Deepswarm [14], which implements
ant colony swarm intelligence. The skopt Python library [1] pro-
vides an implementation of GA Optimization. We use ACME [39]
research framework for RL. Our BO implementation was repur-
posed from the Scikit-opt [2] Python library. For random walker
implementation we used Numpy [35].

6 EVALUATION

We demonstrate how ArchGym evaluates ML algorithms for ar-
chitecture design space exploration in four hardware architecture
components: a DRAM memory controller, a DNN hardware accel-
erator, an SoC, and DNN mapping problem. We then show how
ML algorithm performance varies under different sample efficiency
constraints. Finally, we demonstrate that the dataset collected from
standardized interface from all ML algorithms can aid in construct-
ing a high-fidelity proxy model of the simulator.

The insights from ArchGym are three-fold. First, all ML algo-
rithms can equally find designs for a given target specification, but
their performance is highly sensitive to hyperparameter selection.
Therefore, finding optimal hyperparameters for each algorithm is
akin to a lottery, and an exhaustive search reveals at least one set
of parameters for each algorithm that achieves comparable perfor-
mance (i.e., meets target design) to others.

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

ACO BO GA Random Walker RL Best Design

(a) Low power (b) Low latency (c) Joint optimization of low latency and power

Figure 4: Hyperparameter lottery across different target objectives: low-power, low latency, and joint optimization of latency

and power for DRAMGym environment. ACO, BO, GA, RL refers to ant colony optimization, Bayesian optimization, genetic

algorithm, and reinforcement learning, respectively. The design that achieves the maximum reward is the best design and

denoted by a star symbol.

Second, normalizing comparisons using sample efficiency is
necessary, as it can be difficult to compare ML algorithms when
each can achieve the best architectural solution given unlimited
resources for hyperparameter optimization. Instead, by considering
the constraints of sample efficiency, such as the number of samples
that can effectively be collected from a given architectural simulator,
a family of ML algorithms can be selected and compared effectively.

Third, ArchGym provides standard interfaces used by all the
ML algorithms. The information passed through this interface can
create a standardized dataset. This feature ensures that each ex-
periment results in a usable artifact, irrespective of the type of ML
algorithm. For instance, the diverse dataset collected from all ML
agents for the same problem can be used to build a proxy model
with better accuracy to overcome the sample efficiency problem of
most slower architecture simulators.

6.1 Hyperparameter Lottery and Domain

Specific Operators

Using ArchGym, we demonstrate that across different optimization
objectives and DSE problems, at least one set of hyperparameters
exists that results in the same performance as other ML algorithms.
A poorly selected (random selection) hyperparameter for the ML
algorithm or its baseline can lead to a misleading conclusion that
a particular family of ML algorithms is better than another. For
instance for some algorithms finding the key set of hyperparameters
is easy. Note that we might still need a large sweep to find the
optimal values for the key hyperparameters. A case in point is
using reinforcement learning or supervised learning algorithms
with enough infrastructure and research momentum to identify
the important set of hyperparameters. On the other hand, for the
algorithms that are fallen out of the limelight, finding the right set
of algorithms requires exhaustive search or even luck to make it
competitive as its baseline.

To demonstrate the existence of the hyperparameter lottery, we
compare the performance of each ML agent for the same architec-
ture optimization problem. ArchGym provides a standardization
interface which makes all the agent solve the problem using the
same environment, target objective. This allows for a fair apples-to-
apples comparison in terms of each agent’s ability to solve the task.

To benchmark the agent’s performance, we compare it across the
following axis: (1) How the target objective affect the ML agent’s
performance? (2) How the complexity of the architecture system
affects the ML Agent’s performance? To that end, we compare
against three objectives namely, power, latency, and joint objective
of minimizing latency and power. Likewise for comparing against
increasing complexity of the architecture system, we vary from
component-level, IP-level, and SoC level. For the component level,
we want to design a custom DRAM memory controller for different
workload traces. For the IP-level, we aim to design a custom neu-
ral network accelerator for different neural network architectures.
Lastly, for the SoC level, we aim to design a custom DSSoC for
different target workloads.
Significant statistical variations. Fig. 4 shows the comparison of
different ML agents (named as ACO, BO, GA, Random Walker, RL)
for the architecture DSE problem of finding optimal memory con-
troller parameters for four different memory traces namely cloud-1,
cloud-2, streaming access, and randommemory access. We evaluate
the performance of the ML agents for three different objectives:
low power, low latency, and multi-objective optimization of latency
and power. As shown in Fig. 4, irrespective of the design objectives,
we see a huge variance in the ML agents’ performance depending
upon the selected hyperparameter choice. In the worst case, there
is up to 90% statistical spread (measured as the interquartile range)
across different workloads and target objectives.

We observe the same trend across varying complexity of the ar-
chitecture systems from component-level to SoC-level architecture
exploration as shown in Fig. 5. For example, we use the streaming
access workload for the DRAM memory controller. For DNN hard-
ware accelerator design, we search for an Eyeriss-like [18] hardware
accelerator for the ResNet50 model. For SoC design, we use FARSI
to evaluate different SoCs for edge detection workload. Likewise
for DNN mapping, we find the best mapper for ResNet18 model.
Overall, on average, we perform more than 1.54 billion hardware
simulations across 20 experimental setups (five for DRAMGym,
TimeloopGym, FARSIGym, and MaestroGym respectively).
Effectiveness of domain specific operators.We takeGAMMA [52],
that uses MAESTRO [58] for simulation, as an example. GAMMA
has introduced domain-specific operators, namely “Aging”, “Growth”,

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

ACO BO GA RL RW

N
or

m
al

ize
d

Fi
tn

es
s

(a) DRAMGym

Stream Memory Access

(a) DRAMGym

GAACO BO RL RW

N
or

m
al

ize
d

Re
w

ar
d

0.0
0.2

0.4

0.6

0.8
1.0

Streaming Memory Access

(b) Timeloop Gym

GA BO RW

ResNet 50ResNet50

(b) TimeloopGym
BOGA RWN

or
m

al
ize

d
Di

st
. t

o
G

oa
l

0.0
0.2

0.4

0.6

0.8
1.0

RL ACO

(c) FARSIGym

Edge Detection

(c) FARSIGym

GAACO BO RL RW

Edge Detection

N
or

m
al

ize
d

Di
st

 to
 G

oa
l

0.0

0.2

0.4

0.6

0.8

1.0 ResNet18

GAACO BO RLRW

N
or

m
al

ize
d

Re
w

ar
d

0.0

0.2

0.4

0.6

0.8

1.0
ReNet18

(d) MaestroGym

Figure 5: Hyperparameter lottery across different simulators

and search algorithms for (a) DRAMGym, (b) TimeloopGym,

(c) FARSIGym, and (d) MaestroGym. For TimeloopGym, FAR-

SIGym, and MaestroGym achieving lower distance or reward

is better.

“reordering”. We compare the performance of GAMMA with four
variants of genetic algorithms: ’GA-V1’ (GA in GAMMA), ’GA+RO’
(GA with reordering only), ’GA+AG’ (GA with aging only), and
’GA+GR’ (GAwith growing). In addition, we integrateMASTERO [58]
into ArchGym for comparisons with ’GA Arch-Gym’, without
domain-specific operators. We perform an extensive hyperparame-
ter sweep (∼4000) experiments running for two days.

Fig. 6 summarizes the results for VGG16 and ResNet18. The re-
sults illustrate that different variants of GA are equally effective in
identifying the favorable design point. Interestingly, GA in Arch-
Gym, which does not have domain-specific operators, achieves
better results than GAMMA. These results further validate that
when evaluating different search algorithms, it is critical to prop-
erly tune both the algorithm and its baselines, before making any
conclusions about the efficiency of algorithms.
Implications. The variation implies a number of implications. First,
the choice of hyperparameter is critical not only for the ML agent of
interest but also equally vital for other baselines when we compare
the performance of different ML algorithms for architecture design
space exploration. Second, after an exhaustive hyperparameter
search of 21,600 experiments for these five ML agents, we found at
least one hyperparameter configuration is equally competitive to
other ML agents. Though, in all likelihood, we may have missed
a lot of hyperparameter combinations which makes our subset of
hyperparameters akin to winning a lottery.
A call to action. The takeaway is that future ML-aided design
requires us to report statistical distributions rather than report the
state-of-the-art ML algorithm for a given architecture exploration
problem. As we use these popular algorithms to tackle longstanding
problems in architecture design space exploration, it is important
to understand pitfalls. Otherwise, it is hard to operationalize the
solutions in production and ensure industry adoption. Moreover,

GAMMA GA-V1 GA+RO GA+Ag GA+GR GA
Arch-
Gym

Lower is better

GAMMA GA-V1 GA+RO GA+Ag GA+GR GA
Arch-
Gym

Lower is better

1000

2000

0

La
te

nc
y

(c
yc

le
s)

0

10000

20000

La
te

nc
y

(C
yc

le
s)

(a) ResNet 18 (b) VGG16

Figure 6: Comparision of latency of two ML models namely

ResNet18 and VGG16 with GAMMA (with domain-specific

operators) and vanilla genetic algorithm variants.

N
or

m
al

ize
d

Re
w

ar
d

Number of samples
100 1000 10000 100000 250000

0.0

0.1

0.3

0.2

N
or

m
al

ize
d

Re
w

ar
d

(b) TimeloopGym(a) DRAMGym
Number of samples

100 1000 10000 100000 250000

ACO BO GA RWRL

0.0

0.2

0.05

0.1

0.15

Figure 7: Mean normalized reward (target objective) of ACO,

BO, GA, RL, and RW for DRAMmemory controller design

(DRAMGym) and ML accelerator design (TimeloopGym) in a

constrained setting, limiting the number of samples accessed

by an algorithm from the simulator.

we must choose algorithms by considering domain challenges (e.g.,
scarcity in architecture datasets, the tradeoff between accuracy
and speed with architecture simulators, etc.) rather than biasing
towards any one algorithm approach since it is popular.

6.2 Trade-off Between ML Methods

Though in Section 6.1, we demonstrated that given a free run (un-
limited number of resources to search), it is possible to find at least
one solution that is equally good as the others. However, as we
consider the key challenges of the architecture domain, we ob-
serve certain trends that can be beneficial in selecting a particular
ML algorithm for the architecture design space exploration. For
instance, estimating the cost (e.g., power, latency, and area) for a
given architecture parameter configuration can vary depending on
the underlying architecture model, from analytical model-based
(fast) to cycle-level (slow), and RTL simulation (extremely slow).

In such a scenario, how many samples we can effectively collect
from the architecture model can be a useful constraint in deter-
mining different trade-offs in selecting a given ML algorithm for
architecture design space exploration.

We use the number of samples from the architecture simulator
as a normalization metric to compare the trade-offs between the
search algorithms. We look at the number of samples we can query
from simulator, in the range of 100, 1K, 100K, and 250K.

Fig. 7 compares different ML agents under sample efficiency
constraints for the DRAMmemory controller problem and DNN ac-
celerator design. The x-axis denotes the number of samples we can
access from the simulator. The y-axis denotes the mean normalized
reward for each agent. We base our observation of the trade-offs

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

ACO BO GA RW RL

0
20000
40000

100000
80000
60000

120000
140000

ACO BO GA RW RL
0

20000
40000

100000

60000

120000
140000

80000

Ti
m

e
to

 C
om

pl
et

io
n

(s
)

(a) DRAMGym (b) FARSIGym

0
20000
40000

100000
80000
60000

120000
140000

Figure 8: Comparison of ACO, BO, GA, RW, and RL in terms

of time to completion for DRAMGym and FARSIGym.

on dividing the sample count into two regimes, namely the low
sample count regime, and the high sample count regime.
Low sample count. In the low sample count regime (≤10000 sam-
ples), most ML agents perform decently well. Note that even simpler
algorithms like Random walker (denoted as RW) are equally com-
petitive to Bayesian optimization, genetic algorithm, and ant colony
optimization. Finally, it is also worth noting that the performance of
reinforcement learning is poor, as it is known that these algorithms
are extremely sample inefficient.
Higher sample count. In the higher sample count regime (100000
samples), we observe that simpler algorithms (with exhaustive hy-
perparameter search) still remain competitive. However, we also see
the performance of the reinforcement learning algorithm improve
drastically compared to the lower sample count regime.

These results suggest that depending upon the speed of the ar-
chitectural models collecting large samples can be prohibitively
expensive; all popular algorithms except sample-inefficient algo-
rithms like RL perform equally well. For an architecture model that
trades speed vs. fidelity, where it is relatively easier to collect large
data, we observe that emerging algorithms like reinforcement learn-
ing show increasingly better performance. However, it is important
to note that other algorithms also remain equally competitive.
Time to Completion. Fig. 8 illustrates the time to completion
of various agents in DRAMGym and FARSIGym environment re-
spectively. However, this comparison is not a fair assessment as
it disregards the fact that some agents, such as ACO and GA, are
multi-agent algorithms with different levels of optimization. ACO,
for example, takes longer to complete as it relies on sequential eval-
uation, whereas GA benefits from parallel evaluation. Additionally,
the run time of RL is comparable to that of RW and BO, despite the
fact that RL is accelerated through GPU implementation.

For these reasons, we use sample efficiency, as a better compari-
son point across differentML agents. Additionally, sample efficiency,
unlike other metrics, such as the time to completion and the num-
ber of hardware resources required depends upon the optimization
effort to parallelize and finetune the ML agent implementation. In
such cases, the number of samples from the simulator is a fair com-
parison because it directly considers the key domain challenges,
such as architecture fidelity, speed, and licensing cost, to get useful
data from the simulator.
Implications. The bottleneck in ML-aided architecture design
space exploration is not the ML algorithm but the sheer slowness in
the high-fidelity architecture cost model. On the one hand, slower
architecture cost models make applying new emerging learning-
based algorithms to architecture design space exploration harder.
On the other hand, a faster architecture cost model allows sample
inefficient learning-based algorithms (e.g., RL) to shine.

Table 4: Architectural parameters found by different search

algorithms for finding a low-power DRAM memory con-

troller (target goal: 1 Watt) design for a pointer chasing mem-

ory access pattern.

Parameter Values

Parameter RL RW BO GA ACO

Page Policy Open Adaptive Open Open Open Adaptive Open
Scheduler Fifo Fifo FrFcFs FrFcFs FrFcFs

SchedulerBuffer Shared Shared Shared ReadWrite Bankwise
Request Buffer Size 1 4 4 1 4

RespQueue Reorder Fifo Reorder Reorder Fifo
Refresh Max Postponed 4 8 4 4 2
Refresh Max Pulledin 8 4 4 8 8

Arbiter Reorder Fifo Reorder Reorder Fifo
Max Active Trans. 1 1 1 1 1

A call to action. Given an increased momentum toward novel
learning-based algorithms like reinforcement learning and offline-
RL [59], we will likely see many different formulations and variants
developed in the near future. Already, there are various learning
frameworks [7, 24, 27, 39, 42, 61, 80] built over popular ML re-
search infrastructures like Tensorflow [3] and Pytorch [79]. While
novel learning algorithms formulations continue to use Atari-like
games as a test bed, applying them to a real-world problem like
architecture design exploration is challenging. Therefore, there is a
need for open-source frameworks like ArchGym, that enables fair
‘apples-to-apples’ comparison of the efficacy of rapidly evolving
learning algorithms. Finally, a community-standard approach, akin
to traditional cycle-level simulators like gem5 etc., allows dataset ag-
gregation and high-quality dataset creation, which can help create
more data-driven architecture cost models (e.g., proxy ML models).

6.3 Analysis of Designed Hardware

Table 4 demonstrates the designed hardware for a DRAM memory
controller across different agents. We use a memory trace with
random address access (e.g., pointer chasing). The primay goal is to
design a memory controller that achieves a power consumption of
1 Watt. As shown in Table 4, all the agents are able to find at least
one design that satisfies the target power consumption. We observe
that all agents keep the ‘Max Active Trans.’ buffer size minimal with
value of one. Nonetheless, when the buffer sizes are different, for
example ‘Request Buffer’ or ‘Refresh Max Postponed’, the agents
reach to different ‘Page Policy’, ‘Scheduler’, and ‘SchedulerBuffer’
in order to achieve the same power target of 1 Watt.

7 DATASET GENERATION

Our results in Section 6.2 show that a faster architectural model
can unlock novel applications of learning-based algorithms such as
reinforcement learning [51] or data-driven offline reinforcement
learning [89]. Indeed we notice the upward trend of using expensive
learning-based algorithms [51, 64, 89, 100] for design space explo-
ration that solely rely on analytical models [58] or proxy ML-based
cost models [89], thus bypassing slow architectural simulators.

However, like all statistical models, theseML-based proxymodels
are imperfect and suffer high prediction errors for out-of-distribution
data [38]. Thus, even though fast proxymodels enable using learning-
based algorithms (e.g., RL) for architecture design space exploration,
the quality of designs generated from such architecture design space

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

Aggregator

Arch-Gym
 Dataset

Arch-Gym
 Dataset

Architecture
Proxy

Cost Model

ACO GA
ArchGym ArchGym

dataset

RW
ArchGym

dataset

BO
ArchGym

dataset dataset

Dataset Sampling and Aggregator

Dataset Aggregation using Arch-Gym

Train Proxy Model

Combined
ArchGym
Dataset

Combined
ArchGym
Dataset

Figure 9: Dataset aggregation via ArchGym. Since all the ML

agents use the same standardized interfaces, each experiment

data can be leveraged to build a larger and diverse dataset.

exploration needs more scrutiny. For instance, these proxy models
continue to trade off accuracy for speed (see Section 1). Hence, in
this section, we answer the question of how to improve the accuracy
of the proxy model while leveraging the gain in simulation speed.

To that end, creating a unified interface using ArchGym for all
ML agents also allows the creation of datasets that can be used to
design better data-driven ML-based proxy architecture cost models
to improve architecture simulator’s speed. UsingArchGym datasets
from DRAMGym explored across different ML agents, we construct
an proxy cost model for predicting the latency, power, and energy.
Our results show that two things are important to improve the
accuracy of the proxy models: Dataset size and Dataset diversity.
ArchGym methodology seamlessly provides a means to improve
dataset size and diversity.

7.1 Dataset Construction

Fig. 9 shows the dataset aggregation setup using ArchGym. The
information exchange between the agent and the architecture envi-
ronment is logged in a standardized dataset format [77, 81] for each
hyperparameter exploration study. The standardized dataset can be
seamlessly merged (for size) or sampled by an ML agent type (for
diversity) to construct a high-quality, large, and diverse dataset.

Using the setup shown in Fig. 9, we construct four datasets,
namely ‘Dataset 1’, ‘Dataset 2’, ‘Dataset 3’, and ‘Dataset 4’. We
categorize these four datasets into two groups: ‘Diverse dataset’
(DD) and ‘ACO-only Dataset.’ As the name suggests, the data is
sourced frommultiple agents in theDiverse dataset. This data comes
from numerous hyperparameter explorations of ACO, GA, RW, and
BO. Fig. 10-a shows the exact distribution in the composition of
different datasets in Diverse dataset category. In the ACO-only case,
the entire dataset is constructed only from the ACO’s agent. Ideally,
we can use the data from any other agent as well. Also, to construct
the datasets of specific sizes (for example, Dataset 1 size < Dataset
2 size), we use a random sampling utility in pandas to sample these
two categories of datasets.

7.2 High-Fidelity Proxy Model Training

We use Random Forest [11] model to predict the latency, power, and
energy for the data collected from the DRAMGym environment.
Each target (e.g., latency) is predicted by a separate random forest
regression model. The features fed into the random forest model
are the DRAMGym architecture parameters (see Fig. 3 for the list
of parameters). We conducted a random hyperparameter search for

~9
x

28
x

42
x

36
x

(a) Diversity Distrubution

(b) Dataset diversity and Model’s RMSE Error

DD
ACO
only

DD
ACO
only

DD
ACO
only

DD
ACO
only

RW

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Data Samples

N
or

m
. A

vg
. R

M
SE

Dataset 1
(40K)

Dataset 2
(232K)

Dataset 3
(132K)

Dataset 4
(401K)

Data Samples

Diversity Distribution

Sa
m

pl
e

Si
ze

22

0

4
1e5

10

10

DD
ACO
only

DD
ACO
only

DD
ACO
only

DD
ACO
only

RW

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Data Samples

Sa
m

pl
e

Si
ze

22

0

4
1e5

~9
x

28
x

42
x

36
x

N
or

m
. A

vg
. R

M
SE

Dataset 1
(40K)

Dataset 2
(232K)

Dataset 3
(132K)

Dataset 4
(401K)

Data Samples

10

10

Figure 10: (a) Dataset characteristics and (b) its corresponding

proxy model RMSE of the proxy model.

each model across every dataset size to obtain models that achieves
the lowest root mean square error (RMSE).

7.3 Implications

Our results show that constructing a high-fidelity proxy cost model
requires not just the quantity of the data but also the diversity of
the dataset. To that end, we analyze the performance of the proxy
cost model as we increase the dataset size without diversity as well
as increasing the dataset size with diversity.
Dataset size matters. Our results demonstrate that the dataset
size plays an important role in the accuracy of the proxy model as
shown in Fig. 10-b (the trend line denoted for ACO Only Dataset).
While this is intuitive, it is important to note that we still need to
rely on slow architecture simulators to collect large datasets, which
hinders large-scale data collection.

ArchGym tackles this problem better since it inherently facili-
tates the aggregation of large data from all the ML agents. Although
one needs to run large sweeps due to the hyperparameter lottery,
we believe each exploration experiment can be a useful artifact.
Whether or not each run results in a better design is inconsequen-
tial since all these exploration data can be aggregated seamlessly
due to its standardization provided by ArchGym. Prior work has
shown that invalid designs and other sources of sub-optimal designs
can be beneficial for architecture design space exploration [89].
Dataset diversity matters. Our results demonstrate that dataset
diversity also plays an important role in improving the accuracy of
the proxy model as shown in Fig. 10-b (denoted by the trend line
for Diverse Dataset). In fact, as the dataset size increases, the effect
of sourcing data from diverse sources (in our case, different agents)
is more pronounced. From aggregating data from DRAMGym, we
observe that, on average, we can reduce the RMSE error by 42×.

Fig. 11 visualizes the RMSE error, comparing the values predicted
by the proxy models (for energy, latency, and power) and the actual
ground truth values obtained from the DRAMSys simulator. We

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Actual Actual

Pr
ed

ic
te

d

Pr
ed

ic
te

d

ACO-Only
Dataset

Diverse
Dataset

Figure 11: Comparison of actual vs predicted values for

the power model between single source dataset and diverse

dataset. For single source, we source all the data from one

ML agent (ACO).

observe a consistent trend where the actual and predicted values are
less correlated when we use a dataset from a single source across
different proxy models. A diverse dataset helps improve coverage
of the design space, thus resulting in a higher correlation.
Narrowing the gap between speed and accuracy. Another key
insight of using ArchGym for dataset aggregation is that we can
bridge the gap between the speed and accuracy of architecture
cost models. Using the dataset aggregated from the DRAMGym
environment using ArchGym, we show that the accuracy of the
proxy model is comparable to the ground truth simulator while
also resulting in 2000× speed up as shown in Fig. 12. These high-
accuracy yet speedy architecture cost models can be used to explore
new and emerging learning-based algorithms such as reinforcement
learning, offline-RL [59], and multi-agent reinforcement learning,
which were limited by the slowness in architectural simulators.

While we demonstrate this using DRAMGym, we believe Arch-
Gym natively provides the much-needed diversity in the dataset
aggregation process for other slower architecture simulators. Fur-
thermore, since all ML agents will have a different policy (see Fig. 2
in Section 4), the way they explore the design space is also different.
Thus, the exploration dataset aggregated through ArchGym across
different ML agents (whether run by an individual researcher or
community-wide adoption followed by aggregation) helps create a
diverse dataset. These key features, in turn, improve the accuracy
of the proxy model.

8 DISCUSSION ON EXTENDING ARCHGYM

Integrating other proxy models. We demonstrate how Arch-
Gym can aid in creation of standardized and diverse datasets, which
can be easily aggregated to balance the trade-off between accuracy
and speed. By utilizing an accurate and high-speed proxy model,
we can augment conventional slower architectural simulators while
retaining their original interfaces. This enables us to leverage ma-
chine learning algorithms, including data-driven offline learning
methods [57] or offline reinforcement learning [59], within Arch-
Gym. Since ArchGym interfaces capture complex data, such as
compiled IR or XLA graphs, we can train other deep learning mod-
els, such as GNNs [55], that achieve high accuracy. Regardless of
the proxy model type, all models can be encapsulated using the
same interface.

Err
or

< 1
%

20
00

 x
Spe

ed
 up

Energy Model

Power Model

AutoPilot (AP)

Random
Forrest

Model Model
Type

Single
Source
Dataset

Random
Forrest

Random
Forrest

Diverse
Dataset

0.4

0.61

0.567

2.8e-4

1.91e-3

4.15e-2AutoPilot (AP)Latency Model

(a) Proxy Cost Model Speed up (b) RMS Error of Proxy Model

Simulator Proxy Model

Sp
ee

d
U

p

0

1

2

1000

2000

Figure 12: (a) Speed-up of the ML-based proxy cost model

with cycle accurate simulator as the baseline. (b) The RMSE

error for proxy cost model for latency, power, and energy.

Integrating other algorithms. ArchGym provides a unified in-
terface not only for integrating hardware cost models, but also for
integrating search algorithms or industry grade frameworks [32].
Since each search algorithm (or agent) can be represented as a
combination of a policy and hyperparameters (see Section 4), any
new search algorithm can be abstracted and integrated into Arch-
Gym. Additionally, unified search spaces, such as hardware-aware
NAS [60], require querying the hardware cost model (e.g., a simu-
lator or real hardware) for state and receiving feedback based on
optimization objectives. These problems can also be mapped into
ArchGym (see Figure 1).

9 CONCLUSION

ArchGym is an open source gymnasium for ML-aided architecture
design space exploration. Using our framework, we show the exis-
tence of the hyperparameter lottery. Moreover, ArchGym provides
a standardized interface that can be extended and allows for fair
comparison between different ML algorithms for a given archi-
tecture exploration problem. The standard interfaces for all ML
algorithms further enable the creation of diverse datasets that can
be used to explore novel, data-driven offline learning algorithms
and build fast architectural cost models with high-fidelity.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for their
feedback on improving the manuscript’s quality. Specifically, we
would like to thank Sheng-Chun Kao for his help in understanding
GAMMA codebase. We would like to thank Prof. Radhika Nagpal
for helping us understand Ant-conlony optimization and Genetic
algorithms. We would also like to thank Natasha Jaques, Shayegan
Omidshafiei, Izzeddin Gur from Google Research for helpful discus-
sions on reinforcement learning. We extend our gratitude towards
Cliff Young, James Laudon, and extended Google Research, Brain
Team for their feedback and comments. We also thank Douglas Eck
and Hardik Sharma for feedback on the early draft of this work.
This work is supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Ac-
tivity (IARPA), via 2022-21102100013. The views and conclusions
contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
annotation therein.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

A ARTIFACT APPENDIX

A.1 Abstract

This section summarizes the artifact evaluation for this work. First, we
provide the check-list for this artifact. Next, we describe the directory
structure for the code. Finally, the installation, experiment workflow,
and evaluation illustrate how to use the artifact to reproduce some of
the key results.

A.2 Artifact check-list (meta-information)

• Algorithm: Random Walker, Ant-Colony optimization, Genetic
Algorithm, Bayesian Optimization, Reinforcement Learning

• Program: Python, Docker, Colab
• Data set: ArchGym dataset for DRAMGym
• OS environment: Ubuntu 18.04
• Hardware: Intel Server CPUs
• Execution: Sole user.
• Metrics: Reward, Normalized Average RMSE, RMSE Error
• Output: Experiments produce outputs in console and generates
log files. The log files will generate trajectory information.

• How much disk space required (approximately)?: 128 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 24 hours
• How much time is needed to complete experiments (approxi-

mately)?: We ran a total of 21,000 experiments across three different
enviornments in distributed cluster inside Google. The scheduling
and parallelization code for cluster level hyperameter sweep is pro-
prietary to Google. However, we provide a simple workflow with
DRAMGym. This is the fastest (less than one week) and something
that can run on local machine within a week and still reproduce
some of the results. The results in Section VII runs on Google colab
and should take less than a day to finish.

• Publicly available?: Yes, will be made public.
• Workflow framework used?: Docker, Google Colab
• Archived (provide DOI)?: 10.5281/zenodo.7791715

A.3 Description

A.3.1 How to access. The code required for artificat evaluation is
hosted here: https://github.com/srivatsankrishnan/iscaae. We have
also published the initial artifact on Zenodo. The Zenodo DOI URL
is: https://doi.org/10.5281/zenodo.7791592

A.3.2 Hardware dependencies. To reproduce some of the results
found in this paper we suggest using commensurate hardware. We
also provide a simple to use colab to reporduce results in Section
VII.

A.3.3 Software dependencies. We provide a dockerized environ-
ment to run the training experiments. The repository has a build
script that will build the docker image with all the dependencies.

A.3.4 Data sets. ArchGym trajectories are available in the reposi-
tory (https://doi.org/10.5281/zenodo.7791592). Upon downloading
and unzipping the repository, the dataset should be under the
‘archgym-trajectory’ folder. The colab has a cell to upload this
dataset to reproduce results in Section VII.

A.4 Installation

A.4.1 Installation for DRAMGym Training. For the ease of artifact
evaluation, we provide sample bash scripts that automate launch-
ing and analyzing experiments. To install the necessary packages
we provide a Docker build script (in iscaae/sims/DRAM/build.sh).
Upon running this script, a docker image with all the software de-
pendencies to run Ant-Colony optimization, Bayesian optimization,
Genetic Algorithm, Reinforcement Learning, and Random Walker
will be created.

Key steps include:

• Download the artifact from: https://doi.org/10.5281/zenodo.
7791592

• This will download a zip file named ‘isca-ae.zip’. Please ex-
tract it. It should have three sub-folders named: ‘archgym-
trajectory’, ‘iscaae’, and ‘colab_notebook’.

• To run the training code for DRAMGym, please first build
the docker image. Please use sudo before the script if you
have not setup the docker for sudoless workflow.
(cd isca-ae/iscaae/sims/DRAM/; ./build.sh)

• Enter the docker image using the following command:
sudo docker run \

–entrypoint /bin/bash \
-it dram_arch_gym

A.4.2 Installation for Proxy Model. All packages necessary to re-
produce the proxy models are preinstalled within Google Colab.
Please upload the python notebook
Reprod_Arch_Gym_Proxy_Models.ipynb

Upload the notebook (cd iscaae/colab_notebook) into a Google
colab workspace The dataset is obtained from training DRAM-
Gym with exhaustive hyperparameter sweeps running over sev-
eral weeks. To artifact evaluation, we provide the trajectories (cd
iscaae/archgymtrajectory) as the starting point for training the
proxy model. Please untar the tarball and load it into the colab.

A.5 Experiment workflow

A.5.1 Training Agents for DRAMGym. ArchGym provides five
agents namely random walker, Ant colony optimization, genetic
algorithm, reinforcement learning, and Bayesian optimization for
architecture design space exploration.

Random Walker Agent. To train a random walker agent with
DRAMGym, please run the following command.

python launch_gcp.py –algo=random_walk
This should start the training and generate log files named

random_walker_logs.
Bayesian Optimization. To train a Bayesian optimizaion agent

with DRAMGym, please run the following command.
python launch_gcp.py –algo=bo
This should start the training and generate log files named

bo_logs.
Ant Colony Optimization. To train a Ant-Colony optimization

agent with DRAMGym, please run the following command.
python launch_gcp.py –algo=aco
This should start the training and generate log files named

aco_logs.

https://github.com/srivatsankrishnan/iscaae
https://doi.org/10.5281/zenodo.7791592
https://doi.org/10.5281/zenodo.7791592
https://doi.org/10.5281/zenodo.7791592
https://doi.org/10.5281/zenodo.7791592

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Reinforcement Learning. To train a reinforcement learning
agent with DRAMGym, please run the following command.

python launch_gcp.py –algo=rl This should start the train-
ing and generate log files named
Algo_ppo_...._rewardscale_false.

Genetic Algorithm. To train a genetic algorithm agent with
DRAMGym, please run the following command.

python launch_gcp.py –algo=ga
This should start the training and generate log files named

ga_logs

A.6 Training Proxy Model

To reproduce the proxy model Figures 10, Figure 11,
and Figure 12 found in section VII, please upload the
Reprod_Arch_Gym_Proxy_Models.ipynb to Google colab. You
will also need to upload the proxy_model_data_subsetṫar.gz
file. However, the steps to upload the tar file are found within the
Reprod_Arch_Gym_Proxy_Models.ipynb itself.

To ensure accurate reproduction of results, follow the steps out-
lined in the .ipynb script sequentially. The script is comprehensive,
encompassing all necessary steps - from data loading and trans-
formation to model training and figure generation. Please refrain
from skipping any cells or executing them out of order. The script
proceeds as follows:

(1) Importing all required dependencies.
(2) Prompting the user to upload the .tar.gz file.
(3) Loading and cleaning the data.
(4) Sampling the data into eight sub-datasets and applying ap-

propriate transformations.
(5) Training energy, power, and latency models for each of the

eight sub-datasets.
(6) Displaying the Mean Squared Error (MSE) for each model

and saving each model.
(7) Loading the saved models and generating the three figures

mentioned above.

A.7 Evaluation and expected results

Hyperparameter Lottery. The goal of hyperameter lottery is to
show that all ML algorithms are equally probable find optimial
solution. For DRAMGym, the goal is to obtain an optimal memory
controller resource allocation that achieves a power target of 1 W
for random memory address trace. The maximum possible reward
(based on the target objective for power in Table III) is 346.02). A
simple grep on the log files for each agent (after the completion of
the experiments) should show that all the agents are able to find the
best design (i.e., 1 Watts). On a normalized reward scale, this should
corresponds to the Fig 4-(a) (Low Power) for ‘random’ memory
trace.

ProxyModel Training. Reproducing the proxymodels involves
training several random forest models, which may take in total
approximately 1-2 hours to complete. Once all models have been
trained and saved, one can expect to reproduce Figures 10, Figure
11, and Figure 12 found in section VII,

A.8 Experiment customization

The ArchGym framework facilitates adding new agents and new
environments, workloads, optimization objectives etc. The open
source versionwill have examples on how to easily integrate custom
architectural cost models and new agents.

A.9 Notes

Please be aware that that current workflow is intended to faciliate
artifact evaluation of this paper on a local machine within one week.
For that purpose, we have shown examples of how to reproduce the
training scripts and results for DRAMGym for one memory trace.
To enable large scale hyperparameter sweep studies for slower
simulator/cost model such as Timeloop and FARSI would require
distributed cluster and significant hardware resources.

Please be aware that supplementary steps, such as data ex-
ploration, hyperparameter tuning, and experimentation with al-
ternative machine learning models, have been omitted from the
Reprod_Arch_Gym_Proxy_Models.ipynb file. This decision was
made to streamline the reproduction process for the figures pre-
sented in Section VII.

A.10 Methodology

Submission, reviewing and badging methodology:

• Artifact Review Badging
• Artifact Submission Guide
• Artifact Reviewing Guidelines

REFERENCES

[1] [n. d.]. Scikit-opt. https://scikit-opt.github.io/
[2] [n. d.]. Scikit-Optimize. https://scikit-optimize.github.io/
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: a system for large-scale machine learning.. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), Vol. 16. Savannah,
GA, USA, 265–283.

[4] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei
Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet,
Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia,
Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. 2022. Do As I
Can, Not As I Say: Grounding Language in Robotic Affordances. arXiv preprint
arXiv:2204.01691 (2022).

[5] Dario Amodei, Girish Sastry Danny Hernandez, Jack Clark, Greg Brockman,
and Ilya Sutskever. 2018. AI and Compute. https://openai.com/blog/ai-and-
compute/

[6] Yehia Arafa, Abdel-Hameed A Badawy, Gopinath Chennupati, Nandakishore
Santhi, and Stephan Eidenbenz. 2019. Ppt-gpu: Scalable gpu performance mod-
eling. IEEE Computer Architecture Letters (2019), 55–58.

[7] Dominik Bauer, Timothy Patten, and Markus Vincze. 2021. Reagent: Point
Cloud Registration Using Imitation and Reinforcement Learning. In Conference
on Computer Vision and Pattern Recognition (CVPR).

[8] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305.
http://jmlr.org/papers/v13/bergstra12a.html

[9] Kshitij Bhardwaj, Marton Havasi, Yuan Yao, David M. Brooks, José
Miguel Hernández Lobato, and Gu-Yeon Wei. 2019. Determining Optimal Co-
herency Interface for Many-Accelerator SoCs Using Bayesian Optimization.
IEEE Computer Architecture Letters (CAL) (2019).

[10] Behzad Boroujerdian, Ying Jing, Devashree Tripathy, Amit Kumar, Lavanya
Subramanian, Luke Yen, Vincent Lee, Vivek Venkatesan, Amit Jindal, Robert
Shearer, et al. 2023. FARSI: An early-stage design space exploration framework

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://scikit-opt.github.io/
https://scikit-optimize.github.io/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
http://jmlr.org/papers/v13/bergstra12a.html

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

to tame the domain-specific system-on-chip complexity. ACM Transactions on
Embedded Computing Systems 22, 2 (2023), 1–35.

[11] Leo Breiman. 2001. Random Forests. Machine learning 45, 1 (2001), 5–32.
[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems (NeuRIPS 33 (2020), 1877–1901.

[13] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak
Lee. 2018. Sample-Efficient Reinforcement Learning with Stochastic Ensem-
ble Value Expansion. In Conference on Neural Information Processing Systems
(NeurIPS.

[14] Edvinas Byla and Wei Pang. 2019. DeepSwarm: Optimising Convolutional
Neural Networks using Swarm Intelligence. In UK Workshop on Computational
Intelligence.

[15] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[16] Leandro Nunes de Castro. 2007. Fundamentals of Natural Computing (Chapman
& Hall/Crc Computer and Information Sciences).

[17] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas
Blaschke. 2018. The Rise of Deep Learning in Drug Discovery. Drug discovery
today (2018).

[18] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks. In The 42nd
Annual International Symposium on Computer Architecture (ISCA).

[19] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Brad-
bury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, AndrewM. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022.
PaLM: Scaling Language Modeling with Pathways.

[20] NVIDIA Corporation. 2022. NVIDIA H100 Tensor Core GPU. https://www.
nvidia.com/en-us/data-center/h100/

[21] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir
Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, et al. 2022. Compil-
ergym: Robust, performant compiler optimization environments for ai research.
In 2022 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, 92–105.

[22] Miguel de Prado, Andrew Mundy, Rabia Saeed, Maurizo Denna, Nuria Pazos,
and Luca Benini. 2020. Automated design space exploration for optimized
deployment of dnn on arm cortex-a cpus. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 40, 11 (2020), 2293–2305.

[23] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James
Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb
Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Ste-
fano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu,
Demis Hassabis, and Martin Riedmiller. 2022. Magnetic Control of Tokamak
Plasmas Through Deep Reinforcement Learning. Nature (2022).

[24] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Pe-
ter Zhokhov. 2017. OpenAI Baselines.

[25] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De Bosschere, and
Lizy K. John. 2004. Control Flow Modeling in Statistical Simulation for Accu-
rate and Efficient Processor Design Studies. In Proceedings of the 31st Annual
International Symposium on Computer Architecture (München, Germany) (ISCA
’04). IEEE Computer Society, USA, 350.

[26] Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir
Yazdanbakhsh, and Hadi Esmaeilzadeh. 2020. ReLeQ: A Reinforcement Learning
Approach for Deep Quantization of Neural Networks. IEEE Micro (2020).

[27] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michal-
ski. 2019. Seed RL: Scalable and Efficient Deep-RL with Accelerated Central
Inference. arXiv preprint arXiv:1910.06591 (2019).

[28] Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. Auto-
mated machine learning: Methods, systems, challenges (2019), 3–33.

[29] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,

et al. 2018. A configurable cloud-scale DNN processor for real-time AI. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1–14.

[30] Yiheng Gao and Benjamin Carrion Schafer. 2021. Effective high-level synthesis
design space exploration through a novel cost function formulation. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.

[31] Simon Goss, Serge Aron, Jean-Louis Deneubourg, and Jacques Marie Pasteels.
1989. Self-Organized Shortcuts in the Argentine Ant. Naturwissenschaften
(1989).

[32] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan
Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou,
Luciano Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent, Chris Harris, Vincent
Vanhoucke, and Eugene Brevdo. 2018. TF-Agents: A library for Reinforcement
Learning in TensorFlow. https://github.com/tensorflow/agents. https://github.
com/tensorflow/agents [Online; accessed 25-June-2019].

[33] Gagan Gupta, Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankar-
alingam. 2017. Kickstarting semiconductor innovation with open source hard-
ware. Computer 50, 6 (2017), 50–59.

[34] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[35] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature 585,
7825 (2020), 357–362.

[36] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
memory access patterns. In International Conference on Machine Learning. PMLR,
1919–1928.

[37] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,
and Christopher W Fletcher. 2021. Mind mappings: enabling efficient algorithm-
accelerator mapping space search. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 943–958.

[38] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassi-
fied and Out-of-Distribution Examples in Neural Networks. In International
Conference on Learning Representations.

[39] Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron,
Nikola Momchev, Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton
Raichuk, Damien Vincent, Léonard Hussenot, Robert Dadashi, Gabriel Dulac-
Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino Vieillard, Seyed Kam-
yar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli,
Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez
Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan,
Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. 2020. ACME: A
Research Framework for Distributed Reinforcement Learning. arXiv preprint
arXiv:2006.00979 (2020).

[40] Ramsey Hourani, Ravi Jenkal, W Rhett Davis, and Winser Alexander. 2009.
Automated Design Space Exploration for DSP Applications. Journal of Signal
Processing Systems (2009).

[41] Qijing Huang, Charles Hong, John Wawrzynek, Mahesh Subedar, and
Yakun Sophia Shao. 2022. Learning A Continuous and Reconstructible Latent
Space for Hardware Accelerator Design. In 2022 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE, 277–287.

[42] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga.
2021. CleanRL: High-quality Single-file Implementations of Deep Reinforcement
Learning Algorithms. arXiv preprint arXiv:2111.08819 (2021).

[43] Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana. 2008. Self-
Optimizing Memory Controllers: A Reinforcement Learning Approach. In Pro-
ceedings of the 35th Annual International Symposium on Computer Architecture
(ISCA ’08). IEEE Computer Society, USA, 39–50. https://doi.org/10.1109/ISCA.
2008.21

[44] Tang Jie and Pieter Abbeel. 2010. On a connection between importance sam-
pling and the likelihood ratio policy gradient. Advances in Neural Information
Processing Systems 23 (2010).

[45] Hadi S. Jomaa, Josif Grabocka, and Lars Schmidt-Thieme. 2019. Hyp-RL :
Hyperparameter Optimization by Reinforcement Learning. arXiv preprint
arXiv:1906.11527 (2019).

[46] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff
Young, Xiang Zhou, Zongwei Zhou, and David Patterson. 2023. TPU v4: An
Optically Reconfigurable Supercomputer for Machine Learning with Hardware
Support for Embeddings. arXiv:2304.01433 [cs.AR]

[47] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley,

https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://doi.org/10.1109/ISCA.2008.21
https://doi.org/10.1109/ISCA.2008.21
https://arxiv.org/abs/2304.01433

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gotti-
pati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John
Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, and Jonathan Ross. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings
of the 44th annual international symposium on computer architecture. 1–12.

[48] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J.
Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly Accurate
Protein Structure Prediction with AlphaFold. Nature (2021).

[49] Matthias Jung, Christian Weis, and Norbert Wehn. 2015. DRAMSys: A Flexible
DRAM Subsystem Design Space Exploration Framework. IPSJ Transactions on
System LSI Design Methodology (2015).

[50] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. 2010. An Approach for
Effective Design Space Exploration. In Monterey Workshop.

[51] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. 2020. Confuciux: Au-
tonomous hardware resource assignment for dnn accelerators using reinforce-
ment learning. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 622–636.

[52] Sheng-Chun Kao and Tushar Krishna. 2020. Gamma: Automating the hw map-
ping of dnn models on accelerators via genetic algorithm. In Proceedings of the
39th International Conference on Computer-Aided Design. 1–9.

[53] Tejas S. Karkhanis and James E. Smith. 2004. A First-Order Superscalar Processor
Model. In Proceedings of the 31st Annual International Symposium on Computer
Architecture (München, Germany) (ISCA ’04). IEEE Computer Society, USA, 338.

[54] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip
Roy, Amit Sabne, and Mike Burrows. 2021. A learned performance model for
tensor processing units. Proceedings of Machine Learning and Systems 3 (2021),
387–400.

[55] Samuel Kaufman, Phitchaya Mangpo Phothilimthana, and Mike Burrows. 2019.
Learned TPU cost model for XLA tensor programs. In Proc. Workshop ML Syst.
NeurIPS. 1–6.

[56] Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul Whatmough, Alek-
sandra Faust, Sabrina Neuman, Gu-Yeon Wei, David Brooks, and Vijay Janapa
Reddi. 2022. Automatic Domain-Specific SoC Design for Autonomous Un-
manned Aerial Vehicles. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 300–317.

[57] Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey
Levine. 2022. Data-Driven Offline Optimization For Architecting Hardware
Accelerators. In International Conference on Learning Representations (ICLR).

[58] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael
Pellauer, and Angshuman Parashar. 2020. Maestro: A data-centric approach
to understand reuse, performance, and hardware cost of dnn mappings. IEEE
micro 40, 3 (2020), 20–29.

[59] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline
Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.
CoRR abs/2005.01643 (2020). arXiv:2005.01643 https://arxiv.org/abs/2005.01643

[60] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,
Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. 2021. {HW}-{NAS}-Bench:
Hardware-Aware Neural Architecture Search Benchmark. In International Con-
ference on Learning Representations.

[61] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions
for distributed reinforcement learning. In International Conference on Machine
Learning. PMLR, 3053–3062.

[62] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous Control
with Deep Reinforcement Learning. arXiv preprint arXiv:1509.02971 (2015).

[63] Ting-Ru Lin, Drew Penney, Massoud Pedram, and Lizhong Chen. 2019. Opti-
mizing Routerless Network-on-Chip Designs: An Innovative Learning-based
Framework. arXiv preprint arXiv:1905.04423 (2019).

[64] Ting-Ru Lin, Drew Penney, Massoud Pedram, and Lizhong Chen. 2020. A deep
reinforcement learning framework for architectural exploration: A routerless
NoC case study. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 99–110.

[65] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharad-
waj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho,

Jerónimo Castrillón, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,
Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya Fotouhi,
Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanind-
hito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,
Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian
Menard, Andrea Mondelli, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa
Nguyen, Nikos Nikoleris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto,
Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Se-
toain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo
Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang,
Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian.
2020. The gem5 Simulator: Version 20.0+. arXiv preprint arXiv:2007.03152 (2020).

[66] Wesley J Maddox, Maximilian Balandat, Andrew G Wilson, and Eytan Bakshy.
2021. Bayesian optimization with high-dimensional outputs. Advances in neural
information processing systems 34 (2021), 19274–19287.

[67] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt
Werner. 2002. Simics: A full system simulation platform. Computer 35, 2 (2002),
50–58.

[68] Stefano Markidis, StevenWei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. 2018. Nvidia tensor core programmability, performance & precision. In
2018 IEEE international parallel and distributed processing symposium workshops
(IPDPSW). IEEE, 522–531.

[69] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. 2019.
Ithemal: Accurate, portable and fast basic block throughput estimation using
deep neural networks. In International Conference on machine learning. PMLR,
4505–4515.

[70] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade
Nazi, et al. 2021. A Graph Placement Methodology for Fast Chip Design. Nature
(2021).

[71] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602 (2013).

[72] Jonas Močkus. 1975. On Bayesian Methods for Seeking the Extremum. In
Optimization techniques IFIP technical conference. Springer.

[73] Vittoriano Muttillo, Paolo Giammatteo, Giuseppe Fiorilli, and Luigi Pomante.
2020. An OpenMP Parallel Genetic Algorithm for Design Space Exploration of
Heterogeneous Multi-processor Embedded Systems. In PARMA-DITAM.

[74] Vu Nguyen. 2019. Bayesian optimization for accelerating hyper-parameter
tuning. In 2019 IEEE second international conference on artificial intelligence and
knowledge engineering (AIKE). IEEE, 302–305.

[75] Derek B Noonburg and John P Shen. 1994. Theoretical modeling of super-
scalar processor performance. In Proceedings of the 27th annual international
symposium on Microarchitecture. 52–62.

[76] Mark Oskin, Frederic T. Chong, and Matthew Farrens. 2000. HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor Designs. In Pro-
ceedings of the 27th Annual International Symposium on Computer Architecture
(Vancouver, British Columbia, Canada) (ISCA ’00). Association for Computing
Machinery, New York, NY, USA, 71–82. https://doi.org/10.1145/339647.339656

[77] David Paper and David Paper. 2021. TensorFlow Datasets. State-of-the-Art Deep
Learning Models in TensorFlow: Modern Machine Learning in the Google Colab
Ecosystem (2021).

[78] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

[79] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

[80] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. 2019. Stable Baselines3.

[81] Sabela Ramos, Sertan Girgin, Léonard Hussenot, Damien Vincent, Hanna
Yakubovich, Daniel Toyama, Anita Gergely, Piotr Stanczyk, Raphael Marinier,
Jeremiah Harmsen, et al. 2021. RLDS: an Ecosystem to Generate, Share and Use
Datasets in Reinforcement Learning. arXiv preprint arXiv:2111.02767 (2021).

[82] Ravishankar Rao, Mark H Oskin, and Frederic T Chong. 2002. Hlspower: Hybrid
statistical modeling of the superscalar power-performance design space. In High
Performance Computing—HiPC 2002: 9th International Conference Bangalore,
India, December 18–21, 2002 Proceedings 9. Springer, 620–629.

[83] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International

https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://doi.org/10.1145/339647.339656

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Krishnan et al.

Conference on Knowledge Discovery & Data Mining. 3505–3506.
[84] Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, Michael Gelbart,

Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. A case for efficient ac-
celerator design space exploration via bayesian optimization. In 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). IEEE,
1–6.

[85] Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael
Siu, Stuart Oberman, Saad Godil, and Bryan Catanzaro. 2021. Prefixrl: Optimiza-
tion of parallel prefix circuits using deep reinforcement learning. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 853–858.

[86] Ananda Samajdar, Jan Moritz Joseph, Matthew Denton, and Tushar Krishna.
2021. AIRCHITECT: Learning Custom Architecture Design and Mapping Space.
arXiv preprint arXiv:2108.08295 (2021).

[87] Benjamin Carrion Schafer. 2017. Parallel high-level synthesis design space
exploration for behavioral ips of exact latencies. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 22, 4 (2017), 1–20.

[88] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[89] Kiran Seshadri, Berkin Akin, James Laudon, Ravi Narayanaswami, and Amir
Yazdanbakhsh. 2022. An Evaluation of Edge TPU Accelerators for Convolu-
tional Neural Networks. In 2022 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 79–91.

[90] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,
and Pablo Villalobos. 2022. Compute Trends Across Three Eras of Machine
Learning. arXiv preprint arXiv:2202.05924 (2022).

[91] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically Characterizing Large Scale ProgramBehavior. In Proceedings of the 10th
International Conference onArchitectural Support for Programming Languages and
Operating Systems (San Jose, California) (ASPLOS X). Association for Computing
Machinery, New York, NY, USA, 45–57. https://doi.org/10.1145/605397.605403

[92] Zhan Shi, Chirag Sakhuja, Milad Hashemi, Kevin Swersky, and Calvin Lin. 2020.
Learned Hardware/Software Co-Design of Neural Accelerators. arXiv preprint
arXiv:2010.02075 (2020).

[93] Ghassan Shobaki, Vahl Scott Gordon, Paul McHugh, Theodore Dubois, and
Austin Kerbow. 2022. Register-Pressure-Aware instruction scheduling using ant
colony optimization. ACM Transactions on Architecture and Code Optimization
(TACO) 19, 2 (2022), 1–23.

[94] Greg Snider. 2001. Spacewalker: Automated Design space Exploration for
Embedded Computer Systems. HP Labs Palo Alto HPL-2001-220 (2001).

[95] Lukas Steiner, Matthias Jung, Felipe S Prado, Kirill Bykov, and Norbert Wehn.
2020. DRAMSys4. 0: a fast and cycle-accurate systemC/TLM-based DRAM
simulator. In Embedded Computer Systems: Architectures, Modeling, and Simula-
tion: 20th International Conference, SAMOS 2020, Samos, Greece, July 5–9, 2020,
Proceedings 20. Springer, 110–126.

[96] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[97] Ondřej Sỳkora, Phitchaya Mangpo Phothilimthana, Charith Mendis, and Amir
Yazdanbakhsh. 2022. GRANITE: A Graph Neural Network Model for Basic Block
Throughput Estimation. In 2022 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 14–26.

[98] Synopsys. 2022. Deliver Better, Faster, Cheaper Semiconductors with
DSO.ai. https://www.synopsys.com/implementation-and-signoff/ml-ai-design/
dso-ai.html

[99] Thierry Tambe, En-Yu Yang, Glenn G Ko, Yuji Chai, Coleman Hooper, Marco
Donato, Paul N Whatmough, Alexander M Rush, David Brooks, and Gu-Yeon
Wei. 2021. 9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-
Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-
Sequence DNN Speech Recognition in 16nm FinFET. In 2021 IEEE International
Solid-State Circuits Conference (ISSCC), Vol. 64. 158–160.

[100] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung
Lee, and Song Han. 2020. GCN-RL circuit designer: Transferable transistor
sizing with graph neural networks and reinforcement learning. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[101] Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, and Song Han. 2018. Learning to
design circuits. arXiv preprint arXiv:1812.02734 (2018).

[102] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu.
2021. NeRF--: Neural Radiance Fields without Known Camera Parameters.
arXiv preprint arXiv:2102.07064 (2021).

[103] Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and Tony
Nowatzki. 2021. UNIT: Unifying tensorized instruction compilation. In 2021
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, 77–89.

[104] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S
Emer. 2021. Sparseloop: An analytical, energy-focused design space explo-
ration methodology for sparse tensor accelerators. In 2021 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
232–234.

[105] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe. 2003.
SMARTS: Accelerating microarchitecture simulation via rigorous statistical
sampling. In Proceedings of the 30th annual international symposium on Computer
architecture. 84–97.

[106] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie
Kong. 2019. Random walks: A review of algorithms and applications. IEEE
Transactions on Emerging Topics in Computational Intelligence 4, 2 (2019), 95–107.

[107] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–316.
https://doi.org/10.1016/j.neucom.2020.07.061

[108] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna
Goldie, and Azalia Mirhoseini. 2022. A full-stack search technique for domain
optimized deep learning accelerators. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 27–42.

[109] Jun Zhang, Henry Shu-Hung Chung, Alan Wai-Lun Lo, and Tao Huang. 2008.
Extended ant colony optimization algorithm for power electronic circuit design.
IEEE Transactions on power Electronics 24, 1 (2008), 147–162.

[110] Matthew M Ziegler, Hung-Yi Liu, George Gristede, Bruce Owens, Ricardo Ni-
gaglioni, and Luca P Carloni. 2016. A synthesis-parameter tuning system for
autonomous design-space exploration. In 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1148–1151.

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/605397.605403
https://www.synopsys.com/implementation-and-signoff/ml-ai-design/dso-ai.html
https://www.synopsys.com/implementation-and-signoff/ml-ai-design/dso-ai.html
https://doi.org/10.1016/j.neucom.2020.07.061

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design and Implementation
	3.1 Environment
	3.2 Agent
	3.3 Interface
	3.4 Dataset Generation

	4 Integration of New Algorithms
	5 Experimental Setup
	6 Evaluation
	6.1 Hyperparameter Lottery and Domain Specific Operators
	6.2 Trade-off Between ML Methods
	6.3 Analysis of Designed Hardware

	7 Dataset Generation
	7.1 Dataset Construction
	7.2 High-Fidelity Proxy Model Training
	7.3 Implications

	8 Discussion on Extending ArchGym
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Training Proxy Model
	A.7 Evaluation and expected results
	A.8 Experiment customization
	A.9 Notes
	A.10 Methodology

	References

